

ABHINAV ACADEMY

UDUPI

CET25M1 RELATIONS AND FUNCTIONS

Class 12 - Mathematics

Time All	owed: 1 hour and 30 minutes	Maximum Marks:	75
1.	. Given an arbitrary equivalence relation R in an arbitrary set X, R divides X into		[1]
	a) intersecting sets	b) two sets	
	c) mutually disjoint subsets	d) three sets	
2.	Let A = $\{1, 2, 3\}$ and R = $\{(1, 2), (2, 3), (1, 3)\}$ be a re	elation on A. Then, R is	[1]
	a) symmetric	b) None of these.	
	c) transitive	d) reflexive	
3.	Which of the following is not an equivalence relation	on Z?	[1]
	a) a R b \Leftrightarrow a - b is an even integer	b) a R b \Leftrightarrow a + b is an even integer	
	c) a R b \Leftrightarrow a < b	d) a R b \Leftrightarrow a = b	
4.	Let T be the set of all triangles in the Euclidean plane,	and let a relation R on T be defined as aRb if a is	[1]
	congruent to b \forall a, b \in T. Then R is		
	a) reflexive but not transitive	b) equivalence	
	c) reflexive but not symmetric	d) transitive but not symmetric	
5.	Equivalence classes A _i satisfy	I	[1]
	A. No element of A_{i} is related to any element of A_{j},a	$z \neq j$	
	B. No element of \boldsymbol{A}_i is related to any element of \boldsymbol{A}_i		
	C. Some elements of \boldsymbol{A}_i are related to any element of	Aj, , $i \neq j$	
	D. All elements of \boldsymbol{A}_i are related to any element of \boldsymbol{A}_j	, $i \ eq \ j_{ m i}$ are related to any element of ${ m A}_{ m j, \ i \ eq \ j}$	
	a) B	b) C	
	c) A	d) D	
6.	The relation R in the set $\{1, 2, 3\}$ given by R = $\{\{1, 1\}\}$), (2, 2), (3, 3), (1, 2), (2, 3)} is	[1]
	a) an equivalence relation	b) reflexive but neither symmetric nor transitive	
	c) symmetric but neither reflexive nor transitive	d) reflexive, symmetric but not transitive	
7.	Let X = $\{x^2: x \in N\}$ and the relation $f: N \rightarrow X$ is defined as	fined by $f(x) = x^2$, $x \in N$. Then, this function is	[1]
	a) not bijective	b) injective only	
	c) surjective only	d) bijective	

8.	The function $f: [\frac{-1}{2}, \frac{1}{2}] \rightarrow [\frac{-\pi}{2}, \frac{\pi}{2}]$ defined by $f(x)$	$f(x) = \sin^{-1} (3x - 4x^3)$ is	[1]
	a) surjection but not an injection	b) neither an injection nor a surjection	
	c) injection but not a surjection	d) bijection	
9.	The relation R in N \times N such that (a, b) R (c, d) \Leftrightarrow	a + d = b + c is	[1]
	a) reflexive and transitive but not symmetric	b) an equivalence relation	
	c) reflexive but symmetric	d) transitive but not symmetric	
10.	A function $f : R \to R$ defined by $f(x) = 2 + x^2$ is		[1]
	a) neither one-one nor onto	b) one-one	
	c) not onto	d) not one-one	
11.	Let f: (-1, 1) \rightarrow B where f(x) = $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$ is on	e-one and onto, then B equals	[1]
	a) $(0, \frac{\pi}{2})$	b) $[0, \frac{\pi}{2}]$	
	$c) \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	d) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	
12.	Let $f : R \rightarrow R$ be given by $f(x) = [x]^2 + [x + 1] - 3$,	where [x] denotes the greatest integer less than or equal to x.	[1]
	Then, $f(x)$ is		
	a) many-one and into	b) one-one and onto	
	c) many-one and onto	d) one-one and into	
13.	If A = {a, b, c}, then the relation R = {(b, c)} on A is	is the second	[1]
	a) reflexive and transitive only	b) reflexive only	
	c) symmetric only	d) transitive only	
14.	Let $f : R \to R$ be defined by $f(x) = 2x^3 + 2x^2 + 300x^2$	x + 5 sin x then f is	[1]
	a) one-one onto	b) one-one into	
	c) many one onto	d) many one into	
15.	Let $\mathrm{f}:N o N:f(n)=egin{cases}rac{1}{2}(n+1), ext{ when }n ext{ is }\ rac{n}{2}, ext{ when }n ext{ is even.} \end{cases}$	odd	[1]
	then, f is		
	a) many-one and onto	b) one-one and into	
	c) many-one and into	d) one-one and onto	
16.	The void relation (a subset of $\mathbf{A}\times\mathbf{A}$) on a nonemp	ty set A is:	[1]
	a) Reflexive	b) Transitive and symmetric	
	c) Only symmetric	d) Only transitive	
17.	The function $f : R \to R$ defined by $f(x) = x^2 + x$ is		[1]
	a) bijective	b) many-one	
	c) onto	d) one-one	
18.	The function $f(x) = 10^x$ from R to $[0, \infty)$ is		[1]

	a) one-one and onto	b) an identity function	
	c) one-one and into	d) a constant function	
19.	Let the function $f: N \to N$ be defined by $f(x) = x - 1$, $x > 2$ and $f(1) = f(2) = 1$. The correct alternative will be	[1]
	a) f is one-one but not onto	b) f is many one onto	
	c) f is many one but not onto	d) f is one-one onto	
20.	$f: R \rightarrow R$: $f(x) = x^3$ is		[1]
	a) many one and into	b) one one and onto	
	c) many one and onto	d) one one and into	
21.	Let set $X = \{1, 2, 3\}$ and a relation Ris defined in X	as: R = {(1, 3), (2, 2), (3, 2)}, then minimum ordered pairs	[1]
	which should be added in relation R to make it reflex	xive and symmetric are	
	a) {(1, 1), (3, 3), (3, 1), (1, 2)}	b) {(1, 1), (2, 3), (1, 2)}	
	c) {(3, 3), (3, 1), (1, 2)}	d) {(1, 1), (3, 3), (3, 1), (2, 3)}	
22.	The relation R in the set of natural numbers N define	ed as $R = \{(x, y) : x > y\}$ is	[1]
	a) reflexive, transitive but not symmetric	b) transitive but neither reflexive nor symmetric	
	c) reflexive, symmetric but not transitive	d) an equivalence relation	
23.	Let $f: R - \left[0, \frac{\pi}{2}\right)$ defined by $f(x) = \tan^{-1} (x^2 + x + 2)$	2a) then the set of values of a for which f is onto, is	[1]
	a) $\left[-\frac{1}{8},\infty\right)$	b) [−1,∞)	
	c) $\left(-\frac{1}{4},\infty\right)$	d) $\left[\frac{1}{8},\infty\right)$	
24.	The function $f : A \to B$ defined by $f(x) = -x^2 + 6x - 4$	8 is a bijection, if	[1]
	a) $A=(-\infty,3]$ and $B=(-\infty,1]$	b) $A=[-3,\infty)$ and $B=(-\infty,1]$	
	c) $A=(-\infty,3]$ and $B=[1,\infty)$	d) $A=[3,\infty) ext{ and } B= 1,\infty)$	
25.	S is a relation over the set R of all real numbers and	its is given by (a, b) \in S \Leftrightarrow ab \geq 0. Then, S is	[1]
	a) an equivalence relation	b) reflexive and symmetric only	
	c) symmetric and transitive only	d) antisymmetric relation	
26.	A function f from the natural numbers to the set of in	ntegers defined by f(n) = $\begin{cases} \frac{n-1}{2}, & when \ n \ is \ odd \\ -\frac{n}{2}, & when \ n \ is \ even \end{cases}$	[1]
	a) neither one-one nor onto	b) onto but not one-one	
	c) both one-one and onto	d) one-one but not onto	
27.	Let R = { (x,y): $x^2 + y^2 = 1$ and x, $y \in R$ } be a relation	on in R. The relation R is	[1]
	a) symmetric	b) anti – symmetric	
	c) reflexive	d) transitive	
28.	Let $\mathrm{f}:\mathrm{R} o\mathrm{R}$ be a function defined by $f(x)=rac{x^2-8}{x^2+2}$. Then, f is	[1]
	a) one-one and onto	b) one-one but not onto	

	c) onto but not one-one	d) neither one-one nor onto	
29.	Let A = {a, b, c} and the relation R be defined on A a ordered pairs to be added in R to make R reflexive an	as $R = \{(a, a), (b, c), (a, b)\}$. Then, find minimum number of d transitive.	[1]
	a) 3	b) 1	
	c) 2	d) 4	
30.	Let R be any relation in the set A of human beings in cm taller than y], then R is	a town at a particular time. If R = { [x, y] : x is exactly 7	[1]
	a) not symmetric	b) an equivalence relation	
	c) symmetric but not transitive	d) reflexive	
31.	Number of onto (subjective) functions from A to B if	n(A) = 6 and $n(B) = 3$ are	[1]
	a) 340	b) None of these	
	c) 2 ⁶ - 2	d) 3 ⁶ - 3	
32.	Let R is reflexive relation on a finite set A having n e	lement, and let there be m ordered pairs in R. Then	[1]
	a) m = n	b) $m \ge n$	
	c) m \neq n	d) m \geq n	
33.	Let S be the set of all real numbers and let R be a rela	tion on S defined by a R b $\Leftrightarrow a^2 + b^2 = 1$. Then, R is	[1]
	a) Symmetric but neither reflexive nor	b) Transitive but neither reflexive nor	
	transitive	symmetric	
	c) Reflexive but neither symmetric nor	d) Transitive but neither reflexive nor	
	transitive	symmetric	
34.	Let $f : R \rightarrow R$ be defined as f (x) = 3x. Choose t	he correct answer.	[1]
	a) many – one onto	b) neither one – one nor onto	
	c) one – one but not onto	d) one – one onto	
35.	If A = $\{7, 8, 9\}$, then the relation R = $\{(8, 9)\}$ in A is		[1]
	a) Equivalence	b) Reflexive only	
	c) Symmetric only	d) Non-symmetric	
36.	Let S be the set of all straight lines in a plane. Let R b	be a relation on S defined by $LRM \Leftrightarrow L \perp M$ Then R is	[1]
	a) transitive but neither reflexive nor symmetric	b) an equivalence relation	
	c) reflexive but neither symmetric nor	d) symmetric but neither reflexive nor	
	transitive	transitive	
37.	Let $\mathrm{f}:\mathrm{Z} ightarrow \mathrm{Z}$ be given by $f(x)=\left\{egin{array}{c} rac{x}{2}, \ \mathrm{if}\ x\ \mathrm{is\ even}\ 0, \ \mathrm{if}\ x\ \mathrm{is\ odd}\ \end{array} ight.$. Then f is	[1]
	a) onto but not one-one	b) neither one-one nor onto	
	c) one-one but not onto	d) one-one and onto	
38.	The relation congruence modulo m on the set Z of a	ll integers is a relation of type	[1]

	a) Transitive only	b) Symmetric only	
	c) Reflexive only	d) Equivalence	
39.	The relation S defined on the set R of all real number	by the rule a S b if a \geq b is	[1]
	a) neither transitive nor reflexive but symmetric	b) symmetric, transitive but not reflexive	
	c) an equivalence relation	d) reflexive, transitive but not symmetric	
40.	Let A = $\{1, 2, 3\}$ and B = $\{4, 5, 6, 7\}$ and let f = $\{(1, 4)\}$	4), (2, 5), (3, 6)} be a function from A to B. Then, f is	[1]
	a) many-one	b) bijective	
	c) one-one	d) onto	
41.	The greatest integer function $f : R \to R$, given by $f(x)$	= [x] is	[1]
	a) one-one	b) neither one-one nor onto	
	c) both one-one and onto	d) onto	
42.	A mapping $f : n \rightarrow N$, where N is the set of natural nu $\in N$. Then f is	Sumbers is defined as $f(n) = \begin{cases} n^2, & \text{for } n \text{ odd} \\ 2n+1, & \text{for } n \text{ even} \end{cases}$ for n	[1]
	a) hijective	b) poither injective per surjective	
	a) bijective	d) surjective but not injective	
13	Let $A = \{1, 2, 3\}$ Then number of relations containin	a) surjective but not injective a_{1} (1, 2) and (1, 3) which are reflexive and symmetric but	[1]
10.	not transitive is		[-]
	a) 4	b) 2	
	c) 1	d) 3	
44.	The function $f : X \to Y$ defined by $f(x) = \sin x$ is one	one but not onto, if X and Y respectively equal to	[1]
	a) [0, π] and [0, 1]	b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and [-1, 1]	
	c) $\left[0, \frac{\pi}{2}\right]$ and [-1, 1]	d) R and R	
45.	R is a relation on the set Z of integers and it is given b	$(x, y) \in R \Leftrightarrow x - y \le 1$. Then, R is	[1]
	a) an equivalence relation	b) symmetric and transitive	
	c) reflexive and symmetric	d) reflective and transitive	
46.	The maximum number of equivalence relations on the	e set A = $\{1, 2, 3\}$ are	[1]
	a) 5	b) 1	
	c) 3	d) 2	
47.	The function $f:R \rightarrow R$ defined as $f(x)$ = x^2 is		[1]
	a) many-one	b) neither one-one nor onto	
	c) onto	d) one-one	
48.	Let Z be the set of all integers and let R be a relation of	on Z defined by a R b \Leftrightarrow (a - b) is divisible by 3 Then R is	[1]
	a) an equivalence relation	b) reflexive and transitive but not symmetric	

	c) symmetric and transitive but not reflexive	d) reflexive and symmetric but not transitive	
49.	Let $A = \{1, 2, 3, 4, 5, 6\}$. Which of the following par	titions of A correspond to an equivalence relation on A?	[1]
	a) {1, 2}, {3, 5, 6}.	b) {1, 2, 3}, {3, 4, 5, 6}.	
	c) {1, 2, }, {3, 4}, {2, 3, 5, 6}	d) {1, 3}, {2, 4, 5}, {6}	
50.	A function f: $X \to Y$ is said to be one – one and onto	oif	[1]
	a) f is one – one	b) f is onto	
	c) f is both one – one and onto	d) f is either one – one or onto	
51.	Let R be the relation in the set {1, 2, 3, 4} given by F is	R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then R	[1]
	a) An equivalence relation.	b) Symmetric and transitive but not reflexive.	
	c) Reflexive and symmetric but not transitive	d) Reflexive and transitive but not symmetric	
52.	The relation R defined in the set A = $\{1, 2, 3, 4, 5, 6\}$	as $R = \{(x, y) : y \text{ is divisible by } x\}$ is	[1]
	a) Reflexive, transitive but not symmetric	b) an equivalence relation	
	c) Reflexive, symmetric but not transitive	d) not symmetric	
53.	The relation R = $\{1, 1\}$, $(2, 2)$, $(3, 3)$ on the set $\{1, 2\}$, 3) is	[1]
	a) an equivalence relation	b) reflexive relation only	
	c) symmetric relation only	d) transitive relation only	
54.	Let A = $\{1, 3, 5\}$. Then the number of equivalence re	lations in A containing (1, 3) is:	[1]
	a) 3	b) 2	
	c) 4	d) 1	
55.	Let A = $\{1, 2, 3\}$ and consider the relation R = $\{1, 1\}$, (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is	[1]
	a) neither symmetric, nor transitive	b) symmetric and transitive	
	c) reflexive but not symmetric	d) reflexive but not transitive	
56.	Let the function $f:R \rightarrow R$ be defined by $f(x)$ = 2x +	sin x for $x \in R$. Then f is	[1]
	a) onto but not one-one	b) neither one-one nor onto	
	c) one-one but not onto	d) one-one and onto	
57.	Let R be the relation over the set of all straight lines i	in a plane such that $l_1 R l_2 \Leftrightarrow l_1 \bot l_2$. Then, R is	[1]
	a) symmetric and transitive but not Reflexive	b) Reflexive and transitive but not symmetric	
	c) Symmetric and reflexive but not transitive	d) Symmetric but neither reflexive nor	
		transitive.	
58.	A relation R on a non – empty set A is an equivalenc	e relation if it is	[1]
	a) reflexive, symmetric and transitive	b) reflexive	
	c) reflexive, antisymmetric, transitive	d) symmetric and transitive	
59.	If R is an equivalence relation on A, then R ⁻¹ on A is		[1]
	a) Reflexive only	b) Transitive only	

	c) Symmetric only	d) Equivalence relation	
60.	Let $\mathrm{f}:\mathrm{R} o \left[0,rac{\pi}{2} ight)$ defined by $\mathrm{f}(\mathrm{x})$ = tan ⁻¹ (x ² + x +	a), then the set of values of a for which f is onto is	[1]
	a) [1, 1]	b) [2, 1]	
	c) $\left[\frac{1}{4},\infty\right)$	d) $[0,\infty)$	
61.	$R = \{(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)\}$ be a relation of	on A, then R is	[1]
	a) not anti symmetric	b) symmetric	
	c) anti symmetric	d) Reflexive	
62.	Let A and B be two non-empty sets and let f : (A x B) \rightarrow (B x A) : f(a, b) = (b, a). Then, f is	[1]
	a) one-one and into	b) one-one and onto	
	c) many-one and onto	d) many-one and into	
63.	Let T be the set of all triangles in a plane with R be the	he relation in T given by $R = \{(T_1, T_2) : T_1 \text{ is congruent to} \}$	[1]
	T_2 }. Then, R is		
	a) not transitive	b) symmetric only	
	c) reflexive only	d) an equivalence relation	
64.	The relation greater than denoted by $>$ in the set of i	integers is	[1]
	a) Asymmetric	b) Reflexive	
	c) Transitive	d) Symmetric	
65.	If A = $\{1, 2, 3\}$, then a relation R = $\{(2, 3)\}$ on A is	X'	[1]
	a) Asymmetric only	b) symmetric only	
	c) symmetric and transitive only	d) transitive only	
66.	The relation R is the set of natural number N defined	as R = {(x, y) : $x + 4y = 10, x, y \in N$ } is	[1]
	a) transitive but neither reflexive nor symmetric	b) Reflexive, symmetric but nor transitive	
	c) an equivalence relation	d) Reflexive but neither symmetric nor transitive	
67.	Let $f : R \to R$ defined by $f(x) = \frac{e^{x^2} - e^{-x^2}}{e^{x^2} + e^{-x^2}}$ then		[1]
	a) $f(x)$ is one-one and onto	b) f(x) is one-one but not onto	
	c) $f(x)$ is neither one-one nor onto	d) f(x) is many one but onto	
68.	Let A be the set of all points in a plane and let O be t	he origin. Let $R = \{(P, Q) : OP = OQ\}$. Then, R is	[1]
	a) An equivalence relation	b) Symmetric and transitive but not reflexive	
	c) Reflexive and symmetric but not transitive	d) Reflexive and transitive but not symmetric	
69.	Let $f \; : \; R \; o \; R$ be defined by f (x) = $\; rac{1}{x}$, $orall \; x \in H$	R. Then f is	[1]
	a) one – one	b) Bijective	
	c) f is not defined	d) Onto	

70.	If R is a relation on the set A = $\{1, 2, 3\}$ given by	R = (1, 1), (2, 2), (3, 3), then R is	[1]
	a) transitive	b) reflexive	
	c) symmetric	d) all the three options	
71.	Let N be the set of natural numbers and the function	on f : N \rightarrow N be defined by f (n) = 2n + 3 \forall n \in N. Then f is	[1]
	a) surjective and bijective	b) bijective	
	c) surjective	d) injective	
72.	Equivalence classes are		[1]
	a) trivial sets	b) mutually disjoint subsets	
	c) intersecting sets	d) power sets	
73.	Let L denote the set of all straight lines in a plane.	Let a relation R be defined by lRm if and only if l is	[1]
	perpendicular to m \forall l, m \in L. Then R is		
	a) transitive	b) Asymmetric	
	c) reflexive	d) symmetric	
74.	A relation R on the set N of natural numbers is def	ined as R = {(a, b): a + b is even, \forall a, b \in N}, then R is	[1]
	a) a reflexive relation but not symmetric	b) an equivalence relation	
	c) symmetric but not transitive	d) not an equivalence relation	
75.	$f: C \rightarrow R: f(z) = z $ is		[1]
	a) many-one and onto	b) one-one and into	
	c) one-one and onto	d) many-one and into	