

ABHINAV ACADEMY

UDUPI

CET25C2 ELECTROCHEMISTRY

Class 12 - Chemistry

Time A	llowed: 1 hour and 30 minutes	Maximum Marl	s: 75
1.	Li occupies higher position in the electrochemical s	eries of metals as compared to Cu since	[1]
	a) Li is smaller in size as compared to Cu	b) the standard oxidation potential of Li ⁺ /Li is	
		lower than that of Cu ²⁺ /Cu	
	^{C)} the standard reduction potential of Li ⁺ /Li is	d) the standard reduction potential of Cu ²⁺ /Cu	
	lower than that of Cu ²⁺ /Cu	is lower than that of Li ⁺ /Li	
2.	The number of faradays passed through a solution of	of $CuSO_4$ to produce 1 mol of Cu and O_2 will be:	[1]
	a) 4.0	b) 8.0	
	c) 1.0	d) 2.0	
3.	The difference between the electrode potentials of t	wo electrodes when no current is drawn through the cell is	[1]
	called		
	a) Cell voltage	b) Cell potential	
	c) Potential difference	d) Cell emf	
4.	96500 coulomb deposit 107.9 g of Ag from its solut	tion. If $e=1.6 imes 10^{-19}$ coulomb, calculate the number of	[1]
	electrons per mole of electrons.		
	a) $6.02 imes10^{23}$	b) 96500	
	c) $1.6 imes 10^{-19}$	d) $6.02 imes10^{-23}$	
5.	In a lead storage battery:		[1]
	a) All of these	b) PbO_2 is reduced to $PbSO_4$ at the cathode.	
	c) Pb is oxidised to PbSO ₄ at the anode.	d) Both electrodes are immersed in the same	
	· · ·	aqueous solution of H_2SO_4 .	
6.	In a typical fuel cell, the reactant (R) and product (F	2) are	[1]
	a) $R = H_{2(g)}, O_{2(g)} : P = H_2O(l)$	b) $R = H_{2(g)}$, $N_{2(g)} : P = NH_{3(aq)}$	
	c) $R = H_{2(g)}, O_{2(g)} : P = H_2O_2(l)$	d) $R = H_{2(g)}, O_{2(g)}, Cl_{2(g)} : P = HClO_{4(aq)}$	
7.	The conductivity of 0.20 M solution of KCl at 298	K is 0.0248 S cm ⁻¹ . Calculate its molar conductivity.	[1]
	a) 124.0 S cm ² mol ⁻¹	b) 129.0 S cm ² mol ⁻¹	
	c) 122.0 S cm ² mol ⁻¹	d) 120.0 S cm ² mol ⁻¹	

8. In a reaction, the initial concentration of the reactants increases four fold and the rate becomes sixteen times its [1]

initial value. The order of the reaction is:

12.

13.

14.

15.

16.

a) 2.0	b) 2.5
--------	--------

- 9. A galvanic cell can behave as an electrolytic cell when:
 - a) $E_{cell} > E_{ext}$ b) $E_{cell} = E_{ext}$ c) $E_{ext} > E_{cell}$ d) $E_{cell} = 0$
- 10. For a cell reaction involving two electrons change, the standard e.m.f. of the cell is found to be 0.295 V at .The [1] equilibrium constant of the reaction at 25°C is
 - a) 1×10^{-20} b) 10
 - c) 1×10^{10} d) 2.95×10^{2}
- Solutions of two electrolytes X and Y are diluted. Molar conductivity of X increases 25 times whereas that of Y [1] increases 1.5 times. Which one is a stronger electrolyte?

a) X	b) None of the above	
c) Both X and Y	d) Y	
The correct cell to represent the following	reaction is:	[1]
$Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$		
a) $2Ag Ag^+ Zn Zn^{2+}$	b) $Zn Zn^{2+} Ag^+ Ag$	
c) Ag Ag ⁺ Zn Zn ²⁺	d) $Ag^+ Ag Zn^{2+} Zn$	
The e.m.f of the cell in which the reaction		[1]
$2Ag^+(aq)+H_2(g) ightarrow 2Ag(s)+2H^+$	(aq)	
Occurs is 0.80 V. The standard reduction p	ootential of Ag ⁺ /Ag electrode is:	
a) 0.40 V	b) - 0.80 V	
c) 0.80 V	d) - 0.40 V	
The quantity of charge required to obtain	one mole of aluminium from Al_2O_3 is	[1]
a) 2F	b) 3F	
c) 1F	d) 6F	
The e.m.f of the cell in which the reaction	:	[1]
$2Ag^{+}(aq) + H_{2}(g) \rightarrow 2Ag(s) + 2H^{+}(aq)$		
Occurs is 0.80 V. The standard reduction p	potential of Ag ⁺ / Ag electrode is:	
a) -0.80 V	b) -0.40 V	
c) 0.80 V	d) 0.40 V	
Use the data given below and find out the	most stable oxidised species.	[1]
$E^{\ominus}_{{ m Cr_2O_7^{2-}/Cr^{3+}}}$ = 1.33V		
$E^{\ominus}_{\mathrm{Cl}_2/\mathrm{Cl}^-}$ = 1.36 V		

2/10

[1]

$$\begin{array}{ll} \mathbb{E}_{[0_1 \cup \gamma_1 \subseteq 1]}^{(0)} = 0.74 \vee \\ \mathbb{E}_{[0_1^{(0)} \uparrow_1 \subseteq 1]}^{(0)} = 0.74 \vee \\ \mathbb{P}_{[0_1^{(0)} \uparrow_1 \subseteq 1]}^{(0)} = 0.74 \vee \\ \mathbb{P}_{[0_1^{(0)} \uparrow_1 \subseteq 1]}^{(0)} = 0.74 \vee \\ \mathbb{P}_{[0_1^{(0)} \uparrow_1]}^{(0)} = 2^{(0)} \otimes \mathbb{P}_{[0]}^{(0)} = 0.14 \vee \\ \mathbb{P}_{[0_1^{(0)} \uparrow_1]}^{(0)} = \mathbb{P}_{[0]}^{(0)} = \mathbb{P}_{[0]}^{(0)} = 0.14 \vee \\ \mathbb{P}_{[0_1^{(0)} \uparrow_1]}^{(0)} = \mathbb{P}_{[0]}^{(0)} = \mathbb{P}_{[0]}^{(0)} = \mathbb{P}_{[0]}^{(0)} + \mathbb{P}_{[0]}^{(0)$$

23. When KMnO₄ acts as an oxidizing agent and ultimately forms, MnO_4^{2-} MnO₂, Mn₂O₃ and Mn²⁺, then the [1]

3/10

number of electrons transferred in each case

	a) 1, 5, 3, 7	b) 4, 3, 1, 5	
	c) 1, 3, 4, 5	d) 3, 5, 7, 1	
24.	Which of the following solutions of KCl will have th	e highest value of specific conductance?	[1]
	a) 0.1 M	b) 0.01 M	
	c) 1.0 M	d) 0.5 M	
25.	Calculate the emf of the cell		[1]
	$Fe(s) \mid Fe^{2+}(0.001M) \parallel H^{+}(1M) \mid H_{2}(g) \text{ (1bar)} \mid Pt(s)$	4	
	at 298 K is [given E ⁰ Fe ²⁺ /Fe = -0.44V]]		
	a) 0.55 V	b) 0.50 V	
	c) 0.53 V	d) 0.48 V	
26.	The standard emf of galvanic cell involving 3 moles constant for the reaction of the cell is	of electrons in its redox reaction is 0.59 V. The equilibrium	[1]
	a) 10 ²⁵	b) 10 ³⁰	
	c) 10 ¹⁵	d) 10 ²⁰	
27.	$\Lambda^\circ_{\mathrm{m(NH_4OH)}}$ is equal to	C Y	[1]
	a) $\Lambda^0_{m^0({ m NaOH})}\Lambda^0_{m({ m NaCl})}-\Lambda^0_{[{ m NH}_4{ m CI})}$	b) $\Lambda^0_m(\mathrm{NH}_4\mathrm{Cl})^+\Lambda^0_{m(\mathrm{NaOH})}-\Lambda^0_{(\mathrm{NaCl})}$	
	c) $\Lambda_m^0(\mathrm{NH_4OH})^+\Lambda_m^0(\mathrm{NH_4C_1})^-\Lambda_{(\mathrm{HCI})}^0$	d) $\Lambda^0_m(\mathrm{NH_4Cl})^+\Lambda^0_{m(\mathrm{NaC})}-\Lambda^0_{(\mathrm{NaOH})}$	
28.	How much charge is required for the reduction of 1 m	nol of Al ³⁺ to Al?	[1]
	a) 5F	b) 6F	
	c) 3F	d) 4F	
29.	In the button cells widely used in watches and other o	devices the following reaction takes place:	[1]
	$Zn_{(s)} + Ag_2O_{(s)} + H_2O_{(l)} o Zn_{(aq)}^{2+} + 2Ag_{(s)} +$	$2OH^{-}_{(aq)}$ [Given E ⁰ Zn ²⁺ /Zn = -0.76V, E ⁰ Ag ₂ O/Ag =	
	+0.344V]		
	Determine E ^o cell for the reaction.		
	a) 1.104 V	b) 1.005 V	
	c) 0.913 V	d) 1.159 V	
30.	Four half reactions I to IV are shown below:		[1]
	I. $2\text{Cl}^- \rightarrow \text{Cl}_2 + 2\text{e}^-$		
	II. $4OH^- \rightarrow O_2 + 2H_2O + 2e^-$		
	III. Na ⁺ + e ⁻ \rightarrow Na		
	$\text{IV. } 2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2$		
	Which two of these reactions are most likely to occur	r when concentrated brine is electrolysed?	
	a) I and IV	b) II and III	

4/10

	c) II and IV	d) I and III	
31.	Which of the following is correct for spontaneity of a	a cell?	[1]
	a) $\Delta G = +ve$, $E^o = -ve$	b) $\Delta G = +ve$, $E^o = 0$	
	c) $\Delta G = -ve$, $E^0 = +ve$	d) $\Delta G = -ve, E^0 = 0$	
32.	Consider the following cell reaction:		[1]
	$2Fe_{(s)}+O_2+4H^+(aq) o 2Fe^{2+}(aq)+2H_2O$	(l);	
	$E^0 = 1.67V$		
	At[Fe ²⁺] = 10^{-3} M, P(O ₂) = 0.1atm	Å	
	And pH = 3, the cell potential at 25° C is		
	a) 1.87 V	b) 1.77 V	
	c) 1.47 V	d) 1.57 V	
33.	Debye-Huckel Onsager equation for strong electroly	es:	[1]
	$\wedge = \wedge_0 - {f A} \sqrt{{f C}}$		
	Which of the following equality holds?		
	a) $\wedge = \wedge_0$ as $\mathrm{C} \longrightarrow 0$	b) When $\mathrm{C}\longrightarrow\infty$	
		Then $\wedge = \wedge_0$	
	c) $\wedge = \wedge_0$ as $\mathrm{C} \longrightarrow \sqrt{\mathrm{A}}$	d) $\wedge = \wedge_0$ as $\mathrm{C} \longrightarrow 1$	
34.	Using the data given in below find out in which optic	on the order of reducing power is correct.	[1]
	$E^{\ominus}_{{ m Cr}_2{ m O}_7^{2-}/{ m Cr}^{3+}}=1.33{ m V}$	X'	
	$E^{\ominus}_{{ m Cl}_2/{ m Cl}^-}=1.36V$, ,	
	$\mathrm{E}^{\ominus}_{\mathrm{MnO}_{4}^{-}/\mathrm{Mn}^{2+}}=1.51V$		
	$\mathrm{E}^{\ominus}_{\mathrm{Cr}^{3+}/\mathrm{Cr}} = -0.74V$		
	a) $Mn^{2+} < Cl^- < Cr^{3+} < Cr$	b) $Mn^{2+} < Cr^{3+} < Cl^- < Cr$	
	c) $Cr^{3+} < Cl^- < Mn^{2+} < Cr$	d) $Cr^{3+} < Cl^- < Cr_2O_7^2 - < MnO_4^-$	
35.	Which cell will measure standard electrode potential	of copper electrode?	[1]
	^{a)} Pt(s) H ₂ (g, 0.1 bar) H ⁺ (aq.,1 M) Cu ²⁺	b) Pt(s) I H ₂ (g, 1 bar) I H ⁺ (aq.,1 M) II Cu ²⁺	
	(aq.,1M) Cu	(aq.,1 M) I Cu	
	c) Pt(s) H ₂ (g, 1 bar) H ⁺ (aq.,1 M) Cu ²⁺ (aq.,2	d) Pt(s) H ₂ (g, 1 bar) H ⁺ (aq.,0.1 M) Cu ²⁺	
	M) Cu	(aq.,1 M) Cu	
36.	How much charge is required for the reduction of 1 r	nol of MnO_4^- to Mn^{2+} ?	[1]
	a) 6F	b) 5F	
	c) 4F	d) 3F	
37.	Calculate the standard cell potentials of galvanic cell	, $\Delta_r G^o$ and equilibrium constant of the reactions if the	[1]
	reaction is	2, <u>π</u> 0.4_+]	

$$Fe^{2+}(aq) + Ag^+(aq) o Fe^{3+}(aq) + Ag(s) \left[rac{E^0Fe^{3+}}{Fe^{2+}} = 0.78V, rac{E^0Ag^+}{Ag} = 0.8V
ight]$$

	a) 0.04V, -2.955 kJ/mol, 3.2	b) 0.03V, -2.895 kJ/mol, 3.22	
	c) 0.01V, - 2.800 kJ/mol, 3.2	d) 0.02V, -2.850 kJ/mol, 3.2	
38.	$Zn Zn^{2+}(a = 0.1M) Fe^{2+}(a = 0.01M) Fe$		[1]
	The emf of the above cell is 0.2905 V. Equilibrium co	onstant for the cell reaction is	
	a) $10^{\frac{0.26}{0.0295}}$	b) $10^{\frac{0.32}{0.0295}}$	
	c) $e^{\frac{0.32}{0.295}}$	d) $10^{\frac{0.32}{0.0591}}$	
39.	Which of the following is a redox reaction?		[1]
	a) $Mg(OH)_2 + 2NH_4Cl ightarrow MgCl2 + 2NH_4Cl$	ОН) $CaC_2O_4 + 2HCl ightarrow CaCl_2 + H_2C_2O_4$	
	c) $NaCl+KNO_3 ightarrow NaNO_3+KCl$	d) Zn + 2AgCN \rightarrow 2Ag + Zn $(CN)_2$	
40.	A solution of $Ni(NO_3)_2$ is electrolyzed between platin	num electrodes using a current of 5 amperes for 20 minutes.	[1]
	What mass of Ni is deposited at the cathode?(Given A	At mass of Ni = 58.69u)	
	a) 1.624g	b) 1.424g	
	c) 1.8245g	d) 1.224g	
41.	The standard electrode potential for the half cell react	ions are	[1]
	$Zn^{++}+2e^- ightarrow Zn$, E 0 = -0.76V		
	$Fe^{++}+2e^- ightarrow Fe$, E 0 = -0.44V	C	
	The e.m.f. of the cell reaction $Fe^{++} + Zn o Zn^{++}$	F + Fe is	
	a) + 0.32 V	b) -0.32 V	
	c) +1.20 V	d) -1.20 V	
42.	The passage of electricity in the Daniell cell when Zn	and Cu electrodes are connected:	[1]
	a) from Cu to Zn outside the cell	b) from Zn to Cu inside the cell	
	c) from Zn to Cu outside the cell	d) from Cu to Zn inside the cell	
43.	Electrode potential for Mg electrode varies according	to the equation	[1]
	${ m E}_{{ m Mg}^{2+}/{ m Mg}}$ = $E^{\circ}_{{ m Mg}^{2+} { m Mg}}$ - $rac{0.059}{2}\lograc{1}{[{ m Mg}^{2+}]}$. The graph	of $E_{Mg^{2+}/Mg}$ vs log [Mg ²⁺] is	
	a)	^{b)} ↑	
	- iMi	-+IWE	
	MH2+	Eme	
	$\sim \lfloor \log[Mg^{2^+}] \rightarrow$	$\log[Mg^{2+}] \rightarrow$	
	c)		
	MR - I	- ^{MM}	
	ZMR2+	CMB2+	
11	$IOg[WIg] \rightarrow$	ioginig 1-	[4]
44.	The cell constant of a conductivity cell		[1]

a) changes with temperature of electrolyte

b) changes with change of electrolyte

Calculate the emf of the following cell at 298 K:

45.

d) changes with change of concentration of electrolyte

[1]

Mg(s) | Mg²⁺(0.1M) || Cu²⁺(1.0 \times 10⁻³ M) | Cu(s) [Given: $E^{\circ}_{Cell} = 2.71 \text{ V}$] a) 1.426 V b) 1.8 V c) 2.651 V d) 2.503 V The standard reduction potential E_o for half reactions are 46. [1] $E^0_{cell} = E^0_{cathode} - E^0_{anods}$ The EMF of the cell reaction $Fe^{2+} + Zn = Zn^{2+} + Fe$ is--- [Given $E^0Zn^{2+}/Zn = -0.76V$; $E^0Fe^{2+}/Fe = -0.44V$] a) -1.17 V b) -0.32 V c) + 0.32 V d) +1.17 V [1] Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.3s m⁻¹. If 47. resistance of the 0.4 M solution of the same electrolyte is 260Ω , its molar conductivity is b) $625 imes 10^{-4} \, S \, m^2 mol^{-1}$ d) $62.5 \, S \, m^2 mol^{-1}$ a) $6.25 imes 10^{-4} S \, m^2 mol^{-1}$ c) $6250 \ S \ m^2 mol^{-1}$ 48. If the standard electrode potential of an electrode is greater than zero, then we can infer that its [1] a) reduced form is more stable compared to b) reduced and oxidised forms are equally hydrogen gas stable c) reduced form is less stable than the d) oxidised form is more stable compared to hydrogen gas hydrogen gas 49. Emf of the cell [1] $Mg(s)|Mg^{2+}(0.001M)||Cu^{2} + (0.0001M)|Cu(s)|$ at 298 K is [Given $E^0 = rac{Mg^{2+}}{Mg}$ $\overline{L}=-2.37V$, $rac{E^0Cu^{2+}}{Cu}=+0.34V$] a) 2.50 V b) 2.38 V c) 2.60 V d) 2.68 V 50. The standard reduction potential for Zn is -0.76 V. Which of the following statements is correct when Zn is [1] placed in dilute acid solution? a) Zn is readily oxidized. b) Zn cannot liberate hydrogen from acids. c) Zn^{2+} is readily reduced. d) Zn remains as it is. 51. The highest electrical conductivity of the following aqueous solutions is of [1] a) 0.1 M acetic acid b) 0.1 M chloroacetic acid c) 0.1 M fluoroacetic acid d) 0.1 M difluoroacetic acid 52. Which of the following electrolytic solutions has the least specific conductance? [1] a) 0.002 N b) 0.2 N

53.	What is the molar conductance at infinite dilution for sodium chloride if the molar conductance at infinite dilution of Na ⁺ and Cl ⁻ ions are 51.12×10^{-4} S cm ² /mol and 73.54×10^{-4} Scm ² /mol respectively?		[1]
	a) 198.20 S cm ² /mol	b) 175.78 S cm ² /mol	
	c) 22.42 S cm ² /mol	d) 124.66 S cm ² /mol	
54.	The unit of molar conductivity is		[1]
	a) S cm ⁻² mol ⁻¹	b) _{S cm² mol}	
	c) S cm ² mol ⁻¹	d) $S^{-1} cm^2 mol^{-1}$	
55.	Hydrogen gas is not liberated when the following m	etal is added to dil. HCl.	[1]
	a) Ag	b) Zn	
	c) Mg	d) Sn	
56.	In the electrolysis of acidulated water, it is desired to conditions. The current to be passed is	o obtain 1.12 cc of hydrogen per second under S.T.P.	[1]
	a) 0.965 Amp	b) 9.65 Amp	
	c) 19.3 Amp	d) 1.93 Amp	
57.	Saturated solution of KNO ₃ is used to make 'salt bri	dge' because	[1]
	a) KNO ₃ is highly soluble in water	b) velocity of K^+ is greater than that of NO_3^-	
	c) velocity of NO ₃ ⁻ is greater than that of K ⁺	d) velocity of both K ⁺ and NO ₃ ⁻ are nearly the same.	
58.	The resistance of a conductivity cell containing 0.00	1M KCl solution at 298 K is 1500 Ω. What is the cell	[1]
	constant if conductivity of 0.001M KCl solution at 2	298 K is 0.146×10^{-3} S cm ⁻¹	
	a) 0.239 cm ⁻¹	b) 0.209 cm ⁻¹	
	c) 0.229 cm ⁻¹	d) 0.219 cm ⁻¹	
59.	The standard electrode potential is measured by		[1]
	a) Electrometer	b) Potentiometer	
	c) Galvanometer	d) Voltmeter	
60.	When a lead storage battery is discharged, then:		[1]
	a) lead is formed	b) SO ₂ is evolved	
	c) lead sulphate is consumed	d) sulphuric acid is consumed	
61.	Electrolytic conduction is due to the movement of:		[1]
	a) molecules	b) atoms	
	c) ions	d) electrons	
62.	Choose the one which is a secondary cell:		[1]
	a) Leclanche cell	b) Both Laclanche cell and Mercury cell	

	c) Mercury cell	d) Lead- storage battery cell	
63.	The one which decreases with dilution is		[1]
	a) molar conductance	b) conductance	
	c) specific conductance	d) equivalent conductance	
64.	The amount of electricity required to produce one mo	le of Zn from ZnSO ₄ solution will be:	[1]
	a) 3F	b) 2F	
	c) 4F	d) 1F	
65.	Electrolysis of dilute aqueous NaCl solution was carri	ed out by passing 10 milliampere current. The time	[1]
	required to liberate 0.01 mol of H_2 gas at the cathode	is (1 Faraday = 96500 C mol ⁻¹)	
	a) $1.93 imes 10^4 s$	b) $19.3 imes 10^5 s$	
	c) $9.34 imes 10^4 s$	d) $1.93 imes 10^5 s$	
66.	The standard reduction potentials of Cu ²⁺ /Cu and Cu ²⁺	²⁺ /Cu ⁺ are +0.337 and +0.153 V respectively. The standard	[1]
	electrode potential of Cu ⁺ /Cu half cell is:		
	a) 0.490 V	b) 0.827 V	
	c) 0.184 V	d) 0.521 V	
67.	In a Leclanche dry cell, the cathode is		[1]
	a) Graphite rod	b) NH ₄ Cl	
	c) MnO ₂	d) Zn container	
68.	ΔG and E_{cell}° for a spontaneous reaction will be:		[1]
	a) negative, positive	b) positive, positive	
	c) positive, negative	d) negative, negative	
69.	Which of the following cell was used in Apollo space	programme?	[1]
	a) Daniel cell	b) Dry cell	
	c) $H_2 - O_2$ Fuel cell	d) Mercury cell	
70.	Rust is a mixture of :		[1]
	a) FeO and Fe(OH) ₃	b) Fe ₂ O ₃ and Fe(OH) ₃	
	c) Fe ₃ O ₄ and Fe(OH) ₃	d) FeO and Fe(OH) ₂	
71.	Aluminum displaces hydrogen from dilute HCl where	as silver does not. The E.M.F. of a cell prepared by	[1]
	combining Al/Al ⁺³ and Ag/Ag+ is 2.46 V. The reduct potential of aluminum electrode is:	ion potential of silver electrode is $+$ 0.80 V. The reduction	
	a) 3.26 V	b) -3.26 V	
	c) –1.66 V	d) + 1.66 V	
72.	The hydrogen electrode is dipped in a solution of pH	3 at 25°C. The potential would be (the value of 2.303 RT/F	[1]

is 0.059 V)

a) 0.087 V	b) 0.059 V
c) -0.177 V	d) 0.177 V

- 73. Three electrolytic cells A,B,C containing solutions of ZnSO₄, AgNO₃ and CuSO₄, respectively are connected in [1] series. A steady current of 1.5 amperes was passed through them until 1.45 g of silver deposited at the cathode of cell. How long did the current flow? What mass of copper and zinc were deposited?
 - a) 823s, Copper 0.487g, Zinc 0.437 g b) 863s, Copper 0.426g, Zinc 0.438 g
 - c) 763s, Copper 0.403g, Zinc 0.437 g d) 800s, Copper 0.452g, Zinc 0.437g
- 74. How many coulombs are required for the oxidation of 1 mole of H_2O to O_2 ?
 - a) $1.93 imes 10^5 C$ b) $4.824 imes 10^4 C$
 - c) $3.86 imes 10^5 C$

[1]

[1]

- 75. Given
 - i. Cu²⁺ + 2e⁻ \rightarrow Cu, E⁰ = 0.337 V
 - ii. $Cu^{2+} + e^- \rightarrow Cu^+$, $E^0 = 0.153 \text{ V}$

Electrode potential E° for the reaction $Cu^{2+} + e^- \rightarrow Cu$ will be

- a) 0.52 V
- c) 0.30 V

b) 0.38 V d) 0.90 V

d) $9.65 \times 10^4 C$