

ABHINAV ACADEMY

UDUPI

CET25C4 THE D- AND F- BLOCK ELEMENTS

Class 12 - Chemistry

Time Al	lowed: 1 hour and 30 minutes	Maximum Mar	rks: 75
1.	Gadolinium belongs to 4f series. Its atomic number configuration of gadolinium?	is 64. Which of the following is the correct electronic	[1]
	a) [Xe] $4f 6^5 d^2 6s^2$	b) [Xe] 4f ⁷ 5d ¹ 6s ²	
	c) [Xe] 4f ⁸ 6d ²	d) [Xe] 4f ⁹ 5s ¹	
2.	Which among the following is a synthetic element?		[1]
	a) Pa	b) U	
	c) Fm	d) Th	
3.	Which of the following characteristics of transition	metals is associated with their catalytic activity?	[1]
	a) Paramagnetic nature	b) High enthalpy of atomisation	
	c) Variable oxidation states	d) Colour of hydrated ions	
4.	Why is HCl not used to make the medium acidic in	oxidation reactions of $KMnO_4$ in the acidic medium?	[1]
	a) KMnO ₄ acts as a reducing agent in the	b) KMnO ₄ oxidises HCl into Cl ₂ which is also	
	presence of HCl	an oxidising agent.	
	c) Both HCl and KMnO ₄ act as oxidising	d) KMnO ₄ is a weaker oxidising agent than	
	agents.	HCl.	
5.	KMnO ₄ is the oxo salt of		[1]
	a) Mn ₂ O ₃	b) MnO ₃	
	c) Mn ₂ O ₇	d) MnO ₂	
6.	How many carats are in 87.5% gold?		[1]
	a) 15	b) 21	
	c) 24	d) 18	
7.	Which one of the following element is the main me	,	[1]
	a) Mn	b) Fe	
	c) Cu	d) Al	
8.		ue to the presence of unpaired electrons. Which of the	[1]
	following compounds will be coloured in solid state		r-1
	a) Cu ₂ Cl ₂	b) Ag ₂ SO ₄	

	c) CuF ₂	d) ZnF ₂	
9.	Which of the following oxidation state is common	for all lanthanoids?	[1]
	a) + 5	b) + 2	
	c) + 4	d) + 3	
10.	The lanthanoid contraction is due to:		[1]
	a) Filling of 5d before 4f	b) Filling of 4f before 4d	
	c) Filling of 4d before 4f	d) Filling of 4f before 5d	
11.	The product of oxidation of I ⁻ with MnO ₄ ⁻ in acidic	c medium is:	[1]
	a) I ₂	p) IO ³ -	
	c) IO-	d) IO ₄ -	
12.	The interstitial compounds of transition metals are		[1]
	a) harder	b) more ductile	
	c) softer	d) more metallic	
13.	Haemoglobin and chlorophyll contain:		[1]
	a) Fe and Mg	b) Fe and Mn	
	c) Fe and Co	d) Mg and Fe	
14.	In which of the following does the central atom exh	hibit an oxidation state of +4?	[1]
	a) $[Pt(en)_2Cl_2]^{2+}$	b) [Pt(NH ₃) ₂ Cl ₂]	
	c) K ₂ [Ni(CN) ₄]	d) [Cu(NH ₃) ₄] ²⁺	
15.	How many d-block elements have the ability to ev	olve hydrogen gas from 2% nitric acid?	[1]
	a) Many	b) 1	
	c) 3	d) 2	
16.	Out of the following transition elements, the maxim	num number of oxidation states are shown by	[1]
	a) Mn (Z = 25)	b) Sc (Z = 21)	
	c) Cr (Z = 24)	d) Fe (Z = 26)	
17.	The ions of metals of Group 12 (Zn, Cd and Hg) ha	ave completely filled d orbitals and so they:	[1]
	a) are very high melting solids	b) behave like superconductors	
	c) do not behave like transition metals	d) behave like semiconductors	
18.	Lanthanoid contraction is:		[1]
	a) decrease in stability of higher oxidation	b) the filling of 4f before 5d orbital resulting in	
	states of lanthanides.	a regular decrease in atomic radii.	
	c) ions of the same charge in a given series	d) the decrease in the ionic character of	
	showing a progressive decrease in radius	lanthanides with an increase in the oxidation	
	with increasing atomic number.	state.	

19.	Ferrous sulphate on heating gives:		[1]
	a) SO ₃	b) SO ₂ and O ₂	
	c) SO ₂	d) SO ₂ and SO ₃	
20.	Which of the following is a strong oxidising agent? (At. No. Mn = 25, $Zn = 30$, $Cr = 24$, $Sc = 21$)		[1]
	a) Cr^{3+}	b) Mn^{3+}	
	c) Zn ²⁺	d) Sc ³⁺	
21.	Which is least soluble in water?		[1]
	a) AgBr	b) AgI	
	c) Ag ₂ S	d) AgCl	
22.	Among the following, which bivalent ion of the first t	ransition series shows a maximum magnetic moment?	[1]
	a) Co ²⁺	b) Ni ²⁺	
	c) _{Mn²⁺}	d) Fe ²⁺	
23.	The most common oxidation state for all lanthanoids	is:	[1]
	a) + 5	b) + 4	
	c) + 2	d) + 3	
24.	The most stable ion is		[1]
	a) Fe ²⁺	b) _{Mn²⁺}	
	c) Cr ²⁺	d) All are equally stable	
25.	In which of the following does the central atom exhib	it an oxidation state of +3?	[1]
	a) K ₄ [Fe(CN) ₆]	b) [Cu(NH ₃) ₄] ²⁺	
	c) [Fe(C ₂ O ₄) ₃] ³⁻	d) K ₂ [Ni(CN) ₄]	
26.	Among the following outermost configurations of trans	nsition metals which one shows the highest oxidation state?	[1]
	a) 3d ⁵ 4s ²	b) $3d^64s^2$	
	c) 3d ⁵ 4s ¹	d) $3d^34s^2$	
27.	In dilute alkaline solution, MnO ₄ ⁻ changes to:		[1]
	a) MnO ₄ ²⁻	b) MnO ₂	
	c) Mn ₂ O ₃	d) MnO	
28.	On addition of small amount of KMnO ₄ to concentrate	ed H ₂ SO ₄ , a green oily compound is obtained which is	[1]
	highly explosive in nature. Identify the compound fro	m the following.	
	a) MnO ₂	b) Mn ₂ O ₇	
	c) MnSO ₄	d) Mn ₂ O ₃	

29. Which of the following transition metals does not show variable oxidation state?		ow variable oxidation state?	[1]
	a) Cr	b) Sc	
	c) Cu	d) Ti	
30.	Which of the following is paramagnetic as well as co	ploured ion?	[1]
	a) Ti ⁴⁺⁺	b) Cu ⁺	
	c) Sc ³⁺	d) Cu^{2+}	
31.	Which of the following is not considered a transition	metal?	[1]
	a) Zn	b) Ac	
	c) Y	d) La	
32.	When acidified $K_2Cr_2O_7$ solution is added to Sn^{2+} so	alts then Sn ²⁺ changes to	[1]
	a) _{Sn} +	b) Sn	
	c) Sn ⁴⁺	d) Sn^{3+}	
33.	$\ensuremath{KMnO_4}$ acts as an oxidising agent in alkaline medium	m. When alkaline KMnO ₄ is treated with KI, iodide ion is	[1]
	oxidised to:		
	a) ${ m IO}_3^-$	p) IO-	
	c) I ₂	d) IO_4^-	
34.	The percentage of nickel in the alloy steel that is used	d for making pendulum is:	[1]
	a) 19%	b) 36%	
	c) 0%	d) 10%	
35.	Which forms protective and non-corrosive oxide layer	er?	[1]
	a) Cu	b) Zn	
	c) Cr	d) Ni	
36.	Write the formula of a complex in which oxidation st	tate of Ni is zero.	[1]
	a) Ni(CO) ₄	b) Ni(CN) ₄	
	c) Ni(CN) ₂	d) Ni(Cu) ₂	
37.	The magnetic moment is associated with its spin ang	ular momentum and orbital angular momentum. Spin only	[1]
	magnetic moment value of Cr^{3+} ion is		
	a) 2.87 B.M	b) 3.87 B.M	
	c) 3.57 B.M	d) 3.47 B.M	
38.	Lanthanoid contraction is due to increase in:		[1]
	a) shielding by 4f electrons	b) effective nuclear charge	
	c) atomic number	d) atomic radius	
39.	The compound which is widely used as a white pigm	ent is:	[1]

	a) ZnO	b) Al ₂ O ₃	
	c) PbCO ₃	d) CaCO ₃	
40.	Which of the following Cu ²⁺ halide is not known?		[1]
	a) CuF ₂	b) CuCl ₂	
	c) CuBr ₂	d) CuI ₂	
41.	Oxidation state of central metal atom in the given con $[\text{Co(NH}_3)_4(\text{H}_2\text{O})_2]\text{Cl}_3$	nplex is:	[1]
	a) +1	b) +3	
	c) +4	d) +2	
42.	Electronic configuration of Fe ³⁺ is:		[1]
	a) [Ar] $4s^23d^3$	b) [Ar] 3d ⁵	
	^{c)} [Ar] 4s ² 3d ⁶	d) [Ar] 4s ² 3d ⁴	
43.	Silver ornaments turn black by the presence of which	gas in the atmosphere?	[1]
	a) H ₂ S	b) O ₂	
	c) Cl ₂	d) N ₂	
44.	The incorrect statement about interstitial compounds	is:	[1]
	a) They retain metallic conductivity.	b) They are very hard.	
	c) They are chemically reactive.	d) They have high melting point.	
45.	Which one among the following metals of 3d series h	as the lowest melting point?	[1]
	a) Cu	b) Fe	
	c) Zn	d) Mn	
46.	Which set of ions exhibit specific colours? (Atomic n 28, $Cu = 29$ and $Zn = 30$)	umber of $Sc = 21$, $Ti = 22$, $V = 23$, $Mn = 25$, $Fe = 26$, $Ni = 25$	[1]
	a) Sc ³⁺ , Zn ²⁺ , Ni ²⁺	b) Ti ³⁺ , Ti ⁴⁺ , Ni ²⁺	
	c) Sc ³⁺ , Ti ⁴⁺ , Mn ³⁺	d) V ³⁺ , V ²⁺ , Fe ³⁺	
47.	The catalyst used in Deacon's process is:		[1]
	a) Cu ₂ Cl ₂	b) FeCl ₂	
	c) FeCl ₃	d) CuCl ₂	
48.	DMG test is used for the detection of		[1]
	a) Cu	b) Ti	
	c) Co	d) Ni	
49.	In a neutral solution, how many moles of KMnO ₄ is r	equired for the oxidation of 10 moles of ferric oxalate?	[1]
	a) 6	b) 5	

	c) 2	d) 4.5	
50.	Which of the following ions has the maximum number	r of unpaired d-electrons?	[1]
	[Atomic number : Fe = 26, $V = 23$, $Ti = 22$, $Sc = 21$]		
	a) V^{3+}	b) Sc^{3+}	
	c) Fe ³⁺	d) Ti^{3+}	
51.	Which of the following is a diamagnetic ion? (Atomic respectively)	numbers of Sc, V, Mn and Cu are 21, 23, 25 and 29	[1]
	a) V^2	b) _{Mn} ³⁺	
	c) Cu ²⁺	d) Sc ³⁺	
52.	In the reaction, $HgCl_2 + \ 4KI \ \rightarrow A \ + \ 2KCl \ A$ is:		[1]
	a) HgI ₂	b) KHgI ₃	
	c) K ₂ [HgI ₄]	d) K ₂ HgI ₃	
53.	Which of the following reactions are disproportionation	on reactions?	[1]
	a. $Cu^+ \longrightarrow Cu^{2+} + Cu$		
	b. $3\mathrm{MnO_4^-} + 4\mathrm{H^+} \longrightarrow 2\mathrm{MnO_4^-} + \mathrm{MnO_2} + 2\mathrm{H_2O}$	~ X ~	
	c. $2KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2$		
	d. $2MnO_4^- + 3Mn^{2+} + 2H_2O \longrightarrow 5MnO_2 + 4H^+$		
	a) a, b, c	b) b, c, d	
	c) a, b	d) a, d	
54.	Electronic configuration of a transition element X in +	3 oxidation state is [Ar]3d ⁵ . What is its atomic number?	[1]
	a) 24	b) 26	
	c) 27	d) 25	
55.	Which of the following transition metals shows +1 and	d +2 oxidation states?	[1]
	a) Mn	b) Zn	
	c) Cu	d) Sc	
56.	A reduction in the atomic size with an increase in atom	nic number is characteristic of the elements of:	[1]
	a) radioactive series	b) d-block	
	c) f-block	d) high atomic masses	
57.	Ni ²⁺ in traces can be tested using		[1]
	a) Dimethylglyoxime	b) Potassium ferrocyanide	
	c) Ammonium sulphocyanide	d) Sodium nitroprusside	
58.	When KMnO ₄ solution is added to oxalic acid solution	n, the decolourisation is slow in the beginning but becomes	[1]
	instantaneous after some time because:		
	a) CO ₂ is formed as the products	b) Reaction is exothermic	

	^{C)} Mn ²⁺ acts as autocatalyst	d) MnO_4 catalysis the reaction	
59.	KMnO ₄ acts as an oxidising agent in acidic medium.	The number of moles of KMnO ₄ that will be needed to	[1]
	react with one mole of sulphide ions in acidic solution	ı is:	
	a) $\frac{4}{5}$	b) $\frac{3}{5}$	
	c) $\frac{2}{5}$	d) $\frac{1}{5}$	
60.	The electronic configuration of Cu(II) is 3d ⁹ whereas	that of $Cu(I)$ is $3d^{10}$. Which of the following is correct?	[1]
	a) Cu(II) is less stable	b) Cu(I) and Cu(II) are equally stable	
	c) Stability of Cu(I) and Cu(II) depends on nature of copper salts	d) Cu(II) is more stable	
61.	Ag ⁺ ion is isoelectronic with:		[1]
	a) Pd ²⁺	b) Cd ²⁺ d) Zn ²⁺	
	c) Cu ⁺	d) Zn ²⁺	
62.	The magnetic nature of elements depends on the pres transition element, which shows highest magnetic mo	ence of unpaired electrons. Identify the configuration of oment.	[1]
	a) 3d ²	b) 3d ⁵	
	c) 3d ⁷	d) 3d ⁸	
63.	Which property of transition metals enables them to be	pehave as catalysts?	[1]
	a) Alloy formation	b) High melting point	
	c) Variable oxidation states	d) High ionisation enthalpy	
64.	The most common and stable oxidation state of a Lar	thanoid is:	[1]
	a) +3	b) +4	
	c) +6	d) +2	
65.	Interstitial compounds are formed when small atoms following is not the characteristic property of interstit	are trapped inside the crystal lattice of metals. Which of the ial compounds?	[1]
	a) They retain metallic conductivity.	b) They have high melting points in comparison to pure metals.	
	c) They are chemically very reactive.	d) They are very hard.	
66.	How many electrons are involved in the reduction of	KMnO ₄ in the basic medium?	[1]
	a) 3	b) 1	
	c) 2	d) 4	
67.	There are 14 elements in the actinoid series. Which o	f the following elements does not belong to this series?	[1]
	a) U	b) Tm	
	c) Np	d) Fm	
68.	Lanthanoid contraction is a caused due to:		[1]

a) Poor shielding effect of 4f electron	b) Effective nuclear charge	
c) Size of 4f orbitals	d) Atomic number	
Oxides of which of the lanthanides are used for making	ng gas mantles?	[1]
a) Bk	b) Lr	
c) Dy	d) Ce	
Which of the following is amphotric oxide?		[1]
Mn ₂ O ₇ , CrO ₃ , Cr ₂ O ₃ , CrO, V ₂ O ₅ , V ₂ O ₄ .		
a) V ₂ O ₅ , V ₂ O ₄	b) V ₂ O ₅ and Cr ₂ O ₃	
c) Mn ₂ O ₇ , CrO ₃	d) CrO, V ₂ O ₅	
In which of the following elements, 5f orbitals are pro-	ogressively filled?	[1]
a) Transition element	b) Lanthanoids	
c) Alkaline earth metals	d) Actinoids	
Oxidation state of Mn in MnO_4^- is +7 indicating all	electrons paired in Mn but MnO_4^- is coloured. This is due	[1]
to:		
a) Current transfer	b) Both presence of unpaired electron in d-	
	orbital in oxygen and charge transfer	
c) Presence of unpaired electron in d-orbital in	d) Charge transfer	
oxygen		
Which of the following is called chromic acid?	Y	[1]
a) CrO	b) H ₂ CrO ₄	
c) Cr ₃ O ₄	d) Cr ₂ O ₃	
Red hot steel rods on suddenly immersing in water be	ecome:	[1]
a) Soft and malleable	b) Hard and brittle	
c) Tough and ductile	d) Fibrous	
The yellow colour of the chromate changes to orange	on acidification due to the formation of:	[1]
a) Cr ₂ O ₇ ² -	b) Cr ₂ O ₃	
c) CrO ₂	d) CrO ₄ ² -	
	c) Size of 4f orbitals Oxides of which of the lanthanides are used for making a) Bk c) Dy Which of the following is amphotric oxide? Mn ₂ O ₇ , CrO ₃ , Cr ₂ O ₃ , CrO, V ₂ O ₅ , V ₂ O ₄ . a) V ₂ O ₅ , V ₂ O ₄ c) Mn ₂ O ₇ , CrO ₃ In which of the following elements, 5f orbitals are present a) Transition element c) Alkaline earth metals Oxidation state of Mn in MnO ₄ ⁻ is +7 indicating all to: a) Current transfer c) Presence of unpaired electron in d-orbital in oxygen Which of the following is called chromic acid? a) CrO c) Cr ₃ O ₄ Red hot steel rods on suddenly immersing in water be a) Soft and malleable c) Tough and ductile The yellow colour of the chromate changes to orange a) Cr ₂ O ₇ ²⁻	c) Size of 4f orbitals Oxides of which of the lanthanides are used for making gas mantles? a) Bk b) Lr c) Dy d) Ce Which of the following is amphortic oxide? Mn ₂ O ₇ , CrO ₃ , Cr ₂ O ₃ , Cr ₀ O, V ₂ O ₅ , V ₂ O ₄ . a) V ₂ O ₅ , V ₂ O ₄ b) V ₂ O ₅ and Cr ₂ O ₃ c) Mn ₂ O ₇ , CrO ₃ d) CrO, V ₂ O ₅ In which of the following elements, 5f orbitals are progressively filled? a) Transition element b) Lanthanoids c) Alkaline earth metals d) Actinoids Oxidation state of Mn in MnO ₄ is +7 indicating all electrons paired in Mn but MnO ₄ is coloured. This is due to: a) Current transfer b) Both presence of unpaired electron in dorbital in oxygen and charge transfer c) Presence of unpaired electron in d-orbital in oxygen Which of the following is called chromic acid? a) CrO b) H ₂ CrO ₄ c) Cr ₃ O ₄ Red hot steel rods on suddenly immersing in water become: a) Soft and malleable b) Hard and brittle c) Tough and ductile d) Fibrous The yellow colour of the chromate changes to orange on acidification due to the formation of: a) Cr ₂ O ₃ ²⁻² b) Cr ₂ O ₃