

ABHINAV ACADEMY

UDUPI

CET25C8 ALDEHYDES KETONES AND CARBOXYLIC ACIDS

Class 12 - Chemistry

Time A	Maximum Mar	Maximum Marks: 61	
1.	One mole of a symmetrical alkane on ozonolysis 44u. The alkene is:	s gives two moles of an aldehyde having a molecular mass of	[1]
	a) 1 – butene	b) 2 – butene	
	c) Propene	d) Ethene	
2.	Which of the following is an Acetal ?		[1]
	$^{ m a)}$ $_{ m CH_3-CH}{<}^{ m OCH_3}_{ m OCH_3}$	b) CH ₃ CH ₂ - OCH ₃	
	$_{\rm CH_3-CH} < _{\rm OCH_3}^{\rm OCH_3}$	$ \begin{array}{c} \text{d)} \xrightarrow{\text{H}_3\text{C}} \text{C} \xrightarrow{\text{O} - \text{CH}_2} \\ \text{H}_3\text{C} \xrightarrow{\text{O} - \text{CH}_2} \end{array} $	
3.	For making a distinction between 2 – pentanone	and 3 – pentanone the reagent to be employed is:	[1]
	a) K ₂ Cr ₂ O ₇ / H ₂ SO ₄	b) SeO ₂	
	c) Zn – Hg/HCl	d) Iodine/NaOH	
4.	The reduction of ethanenitrile with sodium and a	alcohol gives:	[1]
	a) 1-aminoethane	b) Ethanamide	
	c) 1-aminopropane	d) Ethanoic acid	
5.	Which of the following is most reactive in nucle	ophilic addition reactions?	[1]
	a) CH ₃ CHO	b) НСНО	
	c) CH ₃ COC ₂ H ₅	d) CH ₃ COCH ₃	
6.	The reagent that can be used to distinguish aceto	phenone and benzophenone is	[1]
	a) aqueous NaHSO ₃	b) 2, 4-dinitrophenyl hydrazine	
	c) I ₂ and NaOH	d) Fehling solution	
7.	Which is the most suitable reagent for the follow	ving conversion?	[1]
	$CH_3-CH=CH-CH_2-\overset{o}{C}-CH_3 \longrightarrow$	$CH_3-CH=CH-CH_2-\overset{o}{C}-OH$	
	a) I ₂ and NaOH solution	b) Tollen's reagent	
	c) Sn and NaOH solution	d) Benzoyl peroxide	
8.	Iodoform test is given by		[1]
	a) Ethanoic acid	b) Pentan-3-one	
	c) Methoxymethane	d) Pentan-2-one	

9.	The oxidation of toluene to benzaldehyde by chromyl chloride is called		[1]
	a) Cannizzaro's reaction	b) Riemer-Tiemann reaction	
	c) Etard reaction	d) Stephen's reaction	
10.	A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH solution gives:		[1]
	a) Benzyl alcohol and methyl alcohol	b) Benzyl alcohol and sodium formate	
	c) Sodium benzoate and methyl alcohol	d) Sodium benzoate and sodium formate	
11.	The following reaction is:		[1]
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/ethylene glycol} heat$	CH ₂ + N ₂	
	a) catalytic hydrogenation	b) Clemens reduction	
	c) catalytic ionisation	d) Wolff – Kishner reduction	
12.	The product formed in the reaction:		[1]
	$O \longrightarrow COOC_2H_5 \longrightarrow NaBH_4 \longrightarrow is$		
	а) НСНО	b) (CH ₃) ₃ C - CHO	
	c) //	d) (CH ₃) ₂ CH - CHO	
	Сно	u) (C113) <u>z</u> C11 /C11C	
13.	The base hydrolysis of an ester is called		[1]
	a) saponification	b) esterification	
	c) hydrolysis	d) neutralization	
14.	The common name for pentanedioic acid is:		[1]
	a) Succinic acid	b) Pimelic acid	
	c) Oxalic acid	d) Glutaric acid	
15.	Benzene reacts with CH ₃ COCl in the presence of A	alCl ₃ to give:	[1]
	a) C ₆ H ₅ COCH ₃	b) C ₆ H ₅ COCl	
	c) C ₆ H ₅ CH ₃	d) C ₆ H ₅ Cl	
16.	The fragrance of the aldehyde and ketone are used for perfume and similar uses depend on:		[1]
	a) on its reactivity with other functional	b) size and solubility of the aldehyde and	
	groups.	ketone molecule.	
	c) only solubility of aldehydes and ketones.	d) moisture of the air.	
17.	Pentan-2-one and Pentan-3-one can be distinguished by:		[1]
	a) Sodium bicarbonate test	b) Fehling's test	
	c) Tollens' test	d) Iodoform test	
18.	Methyl ketones are usually characterized by:		[1]
	a) Benedict's reagent	b) Iodoform test	
	c) Schiff's test	d) Tollen's reagent	

2/7

19.	Which of the following will undergo aldol condensations:	ation?	[1]
	a) CH ₃ CH ₂ CHO	b) CH = CCHO	
	c) C ₆ H ₅ CHO	d) CH ₂ = CHCHO	
20.	Acetone is treated with excess of ethanol in the presence of hydrochloric acid. The product obtained is:		[1]
	a) (CH ₃) ₂ C(OH)(OC ₂ H ₅)	b) (CH ₃) ₂ C(OC ₂ H ₅)(OC ₂ H ₅)	
	c) CH ₃ COOH	d) (CH ₃) ₂ CH(OH)	
21.	Which of the following compounds will undergo se	lf-condensation in the presence of dilute NaOH solution?	[1]
	a) CH ₃ CH ₂ CHO	b) (CH ₃) ₃ C - CHO	
	c) C ₆ H ₅ CHO	d) H-CHO	
22.	Common name of Ethan-1, 2-dioic acid is known a		[1]
	a) Adipic acid	b) Acetic acid	
	c) Oxalic acid	d) Phthalic acid	
23.	Which of the following reagents would one choose	to transform CH ₃ COCl into acetone?	[1]
	a) CH ₃ MgBr	b) (CH ₃) ₂ Cd	
	c) (CH ₃ O) ₂ Mg	d) CH ₃ Cl	
24.	Compound 'A' undergoes the formation of cyanohy (CH ₃ CHOHCOOH). Therefore, compound 'A' is:	drins which on hydrolysis gives lactic acid	[1]
	a) Acetone	b) Benzaldehyde	
	c) Acetaldehyde	d) Formaldehyde	
25.	Which of the following has most acidic hydrogen?		[1]
	a) 2, 3 – Hexanedione	b) 2, 5 – Hexanedione	
	c) 2, 4 – Hexanedione	d) 3 – Hexanone	
26.	Toluene reacts with Cl_2 /hy and H_3O^+ to form:		[1]
	a) Chlorotoluene	b) Benzoic Acid	
	c) Benzaldehyde	d) Benzal chloride	
27.	Give the products of the reaction		[1]
	$PhC\equiv CMe \xrightarrow{H_3O^+,Hg^{2+}} ?$		
	a) PhCH ₂ CH ₂ CHO	b) PhCOCH ₂ CH ₃	
	c) PhCOCOMe	d) PhCH ₂ COCH ₃	
28.	Aldehydes and ketones react with hydroxylamine to form		[1]
	a) cyanohydrins	b) Oxime	
	c) semicarbazones	d) hydrazones	
29.	The molecular formula of ethyl acetate is:		[1]

3/7

a) C₄H₈O

b) $C_4H_8O_2$

c) $C_5H_{10}O_2$

- d) $C_5H_8O_2$
- 30. The compound formed as a result of oxidation of ethyl benzene by KMnO₄ is

[1]

a) Benzophenone

b) Acetophenone

c) Benzoic acid

- d) Benzyl alcohol
- 31. What kind of compounds undergo Cannizaro reactions?

[1]

- a) Ketones with no α hydrogen
- b) Aldehydes with α hydrogen
- c) Aldehydes with no α hydroge
- d) Carboxylic acids with α hydrogen
- 32. Oximes are formed by the reaction of aldehydes and ketones with:

[1]

a) NH₂NH₂

b) NH₂OH

c) NH₃

- d) NH₂NHC₆H₅
- 33. When ethanal is heated with Fehlings solution, it gives a precipitate of:

[1]

[1]

a) $Cu + Cu_2O + CuO$

b) CuO

c) Cu

d) Cu₂O

In the following reaction 34.

the product formed is:

- CH₃-CH=CH-CH₂-OH
 - a) CH₃-CH₂-CH₂-CHO

b) CH_3 -CH = CH-COOH

c) CH_3 -CH = CH-CHO

- d) CH₃-CHO and CH₃CH₂OH
- 35. Compounds A and C in the following reaction are

[1]

- $CH_3CHO \stackrel{(i) \ CH_3MgBr}{------}$
- $\begin{tabular}{ll} Hydorboration \end{tabular}$ ightarrow (C)
- a) optical isomers

b) identical

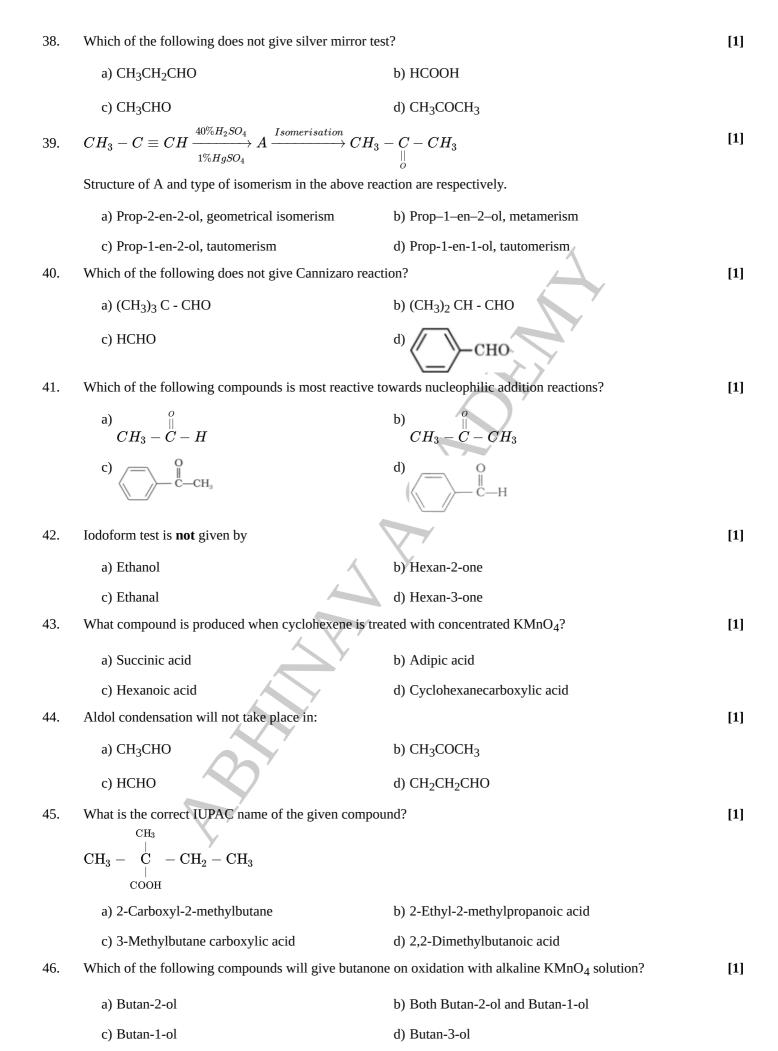
c) functional isomers

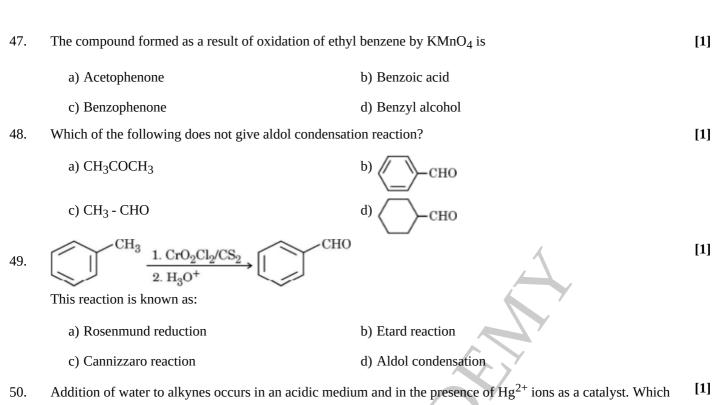
- d) positional isomers
- In Clemmensen reduction, carbonyl compound is treated with __ 36.

[1]

[1]

a) sodium amalgam + HNO₃


b) zinc amalgam + nitric acid


c) sodium amalgam + HCl

- d) zinc amalgam + HCl
- 37. Which product is formed when the compound
- CHO is treated with concentrated aqueous KOH

solution?

a)
$$\stackrel{O}{=}$$
 $\stackrel{C}{=}$ $\stackrel{O}{\circ}$ $\stackrel{+}{\circ}$ $\stackrel{-}{\circ}$ $\stackrel{+}{\circ}$ $\stackrel{-}{\circ}$ $\stackrel{+}{\circ}$

of the following products will be formed on addition of water to but-1-yne under these conditions?

a)
$$CH_3-CH_2-CH_2-C-H$$

b)
$$CH_3-CH_2-\overset{o}{C}-CH_3$$

c)
$$CH_3-CH_2-\overset{\circ}{C}-OH+CO_2$$

$$\overset{o}{(CH_3-C-OH+H-C-H)}$$

A compound (A) with molecular formula C₅H₁₀O, forms a phenyl hydrazone and gives negative Tollens' and [1] 51. iodoform tests. The compound on reduction gives n-pentane. The compound (A) is:

a) Pentan-3-one

b) Pentan-2-one

c) Pentanal

d) Pentanol

52. Cannizaro's reaction is not given by [1]

a) CH₃CHO

c) CHO d) HCHO

The correct sequence of steps involved in the mechanism of Cannizzaro's reaction is 53.

[1]

- a) electrophilic attack by OH⁻, transfer of H⁺ and transfer of H-
- b) transfer of H⁺, nucleophilic attack and transfer of H
- c) electrophilic attack by OH⁻, transfer of H⁻
- d) nucleophilic attack, transfer of H⁻ and transfer of H⁺

54.
$$C_6H_5CHO + CH_3COCH_3 \xrightarrow{OH^-} C_6H_5CH = CH - COCH_3$$
 This reaction is known as:

AA

	a) Friedel-Crafts reaction	b) Cannizzaro's reaction	
	c) Aldol condensation	d) Cross-Aldol condensation	
55.	The compound which forms acetaldehyde when heate	ed with dilute NaOH is:	[1]
	a) 1, 2 dichloroethane	b) 1, 1, 1 trichloroethane	
	c) 1 chloroethane	d) 1, 1 dichloroethane	
56.	Many naturally occurring aldehydes and ketones are	used in the blending of perfumes and flavouring agents. But	[1]
	the preferred ones are		
	a) lower ketones	b) higher ketones	
	c) lower aldehydes	d) higher aldehydes	
57.	The reagent which does not react with both acetone a	nd benzaldehyde.	[1]
	a) Sodium hydrogensulphite	b) Phenyl hydrazine	
	c) Fehling's solution	d) Grignard reagent	
58.	Which of the following is the strongest acid?		[1]
	a) Methyl alcohol	b) Acetic acid	
	c) Phenol	d) Water	
59.	Benzaldehyde and acetone can be best distinguished	by using:	[1]
	a) Hydrazine	b) Tollen's reagent	
	c) 2, 4 – DNP reagent	d) Sodium hydroxide solution	
60.	Give IUPAC names of the following compound: CH ₃	CH ₂ CH ₂ CH(Br)CH(CH ₃)CH ₂ CHO	[1]
	a) 4 – Bromo – 3 – methylheptanal	b) 2 – Methyl – 3 – bromoheptanal	
	c) 3– Methyl – 3 – bromoheptanaldehyde	d) 2 – Methyl – 3 – bromoheptanaldehyde	
61.	How to do the following conversion:		[1]
	$RCOOCl + ? \rightarrow RCHO$		
	a) Using H ₂ -Pd,BaSO ₄	b) Using DIBAL-H	
	c) Using H ₂ - Pd	d) Using NaBH ₄	