

Time Allowed: 1 hour and 30 minutes

 $ec{b}=2\hat{i}-7\hat{j}+\hat{k}.$

a) $11\sqrt{2}$

c) $15\sqrt{3}$

ABHINAV ACADEMY

UDUPI

CET25M10 VECTOR ALGEBRA

Class 12 - Mathematics

1.	The scalar projection of the vector $3\hat{i}-\hat{j}-2\hat{k}$ on the	he vectors $\hat{i}-2\hat{j}-3\hat{k}$ is	[1]
	a) $\frac{7}{2}$	b) $\frac{7}{\sqrt{14}}$	
	c) $\frac{6}{13}$	d) $\frac{7}{14}$	
2.	2. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with \hat{i} $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ		
	a) $2\frac{\pi}{3}$	b) $\frac{\pi}{10}$	
	c) $\frac{\pi}{3}$	d) $\frac{\pi}{5}$	
3. The vector $ec{b}=3\hat{i}+4\hat{k}$ is to be written as the sum of a vector $ec{lpha}$ parallel to $ec{a}=\hat{i}+\hat{j}$ and a vec			[1]
	perpendicular to $ec{a}$. Then $ec{lpha}=$		
	a) $\frac{2}{3}(i+j)$	b) $rac{3}{2}(i+j)$	
	c) $\frac{1}{2}(i+j)$	d) $\frac{1}{3}(i+j)$	
4.	Let $ ec{a} $ = 7, $ ec{b} $ = 11 and $ ec{a}+ec{b} =10\sqrt{3}$.	X,7	[1]
	What is the angle between $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$?	7	
	a) None of these	b) $\frac{\pi}{6}$	
	c) $\frac{\pi}{2}$	d) $\frac{\pi}{3}$	
5.	The sine of the angle between the vectors \vec{a} = $3\hat{i}+\hat{j}$	$\hat{j}+2\hat{k}$ and \vec{b} = $\hat{i}+\hat{j}+2\hat{k}$ is:	[1]
	a) $\frac{4}{\sqrt{21}}$	b) $\sqrt{\frac{5}{21}}$	
	c) $\sqrt{\frac{3}{21}}$	d) $\frac{5}{\sqrt{21}}$	
6.	Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2, respectively, having \vec{a} . $\vec{b}=\sqrt{6}$		[1]
	a) $\frac{\pi}{5}$	b) $\frac{\pi}{3}$	
	c) $\frac{\pi}{2}$	d) $\frac{\pi}{4}$	
7.	ž		[1]
	a) $\overset{ ightarrow}{ab}$	b) $\vec{a}.\vec{b}$	
	$c) \rightarrow \cdots \rightarrow$	d) ab	

[1]

Maximum Marks: 75

Find the area of the parallelogram whose adjacent sides are determined by the vectors $ec{a}=\hat{i}-\hat{j}+3\hat{k}$ and

b) $11\sqrt{3}$

d) $15\sqrt{2}$

9.	The angle between the vectors $ec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and	$1ec{b}=3\hat{i}-2\hat{j}+\hat{k}$ is	[1]
	a) $\cos^{-1} \frac{3}{5}$	b) $\frac{3}{\sqrt{12}}$	
	c) $\cos^{-1} \frac{5}{7}$	d) $\frac{3}{\sqrt{14}}$	
10.	If $ec{a}=(\hat{i}-\hat{j}+2\hat{k})$ and $ec{b}=(2\hat{i}+3\hat{j}-4\hat{k})$ then $ $	$ ec{a} imes b =?$	[1]
	a) $\sqrt{174}$	b) $\sqrt{87}$	
	c) $\sqrt{73}$	d) $\sqrt{93}$	
11.	The position vectors of three consecutive vertices of a $(5\hat{i}-3\hat{j}+\hat{k})$ and $C(12\hat{i}+4\hat{j}+5\hat{k})$. The position		[1]
	a) $21\hat{ ext{i}} + 3\hat{ ext{j}}$	b) $-3\hat{\mathrm{i}}-5\hat{\mathrm{j}}-10\hat{\mathrm{k}}$	
	c) $11\hat{ ext{i}} + 9\hat{ ext{j}} - 2\hat{ ext{k}}$	d) $-11\hat{ ext{i}}-9\hat{ ext{j}}+2\hat{ ext{k}}$	
12.		tively, $3\hat{i}-5\hat{j}+2\hat{k}$ and $\hat{i}+\hat{j}-\hat{k}$ What is the length of	[1]
	$\stackrel{ ightarrow}{AB}$?		
	a) 9	b) 11	
	c) 7	d) 6	
13.	The position vector of the point which divides the join	n of points $2\vec{a}-3b$ and $\vec{a}+\vec{b}$ in the ratio 3: 1 is	[1]
	a) $\frac{3\vec{a}}{4}$	b) $\frac{3\vec{a}-2\vec{b}}{2}$	
	c) $\frac{5\vec{a}}{4}$	d) $\frac{7\vec{a} - 8\vec{b}}{4}$	
14.	Consider the following		[1]
	I. $4\hat{\mathbf{i}} \times 3\hat{\mathbf{i}} = 0$		
	$II. \frac{4\hat{\mathbf{i}}}{3\hat{\mathbf{i}}} = \frac{4}{3}$		
	Which of the above statement(s) is/are correct?		
	a) Both I and II	b) Neither I nor II	
	c) Only I \longrightarrow \longrightarrow	d) Only II →	F.4.7
15.	If ABCDEF is a regular hexagon, then $\overrightarrow{AD} + \overrightarrow{EB} +$	$F\dot{C}$ equals.	[1]
	a) $2\overrightarrow{AB}$	b) $\overrightarrow{4AB}$	
	c) $3\overrightarrow{AB}$	d) $\xrightarrow{0}$	
16.	If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ $with \ \hat{i}, \ \frac{\pi}{4}$ $with \ \hat{j}$	and an acute angle $ heta$ with \hat{k} , then the components of	[1]
	$ec{a}$ are		
	a) $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{3}$	b) $\frac{1}{3}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{2}$	
	c) $\frac{1}{3}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{2}$	d) $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{2}$	
17.	If $ \vec{a} + \vec{b} = \vec{a} - \vec{b} $, then which one of the following is	correct?	[1]
	a) $ec{a}$ is parallel to $ec{b}$	b) $ec{a}$ is a unit vector	
	c) $ec{a}$ is perpendicular to $ec{b}$	d) $ec{a}=\lambdaec{b}$ for some scalar λ	
18.	The direction cosines of the vector $ec{a} = (-2\hat{i} + \hat{j} -$	$5\hat{k})$ are	[1]

	a) -2 , 1, -5	b) $\frac{1}{3}, \frac{-1}{6}, \frac{-5}{6}$	
	c) $\frac{-2}{\sqrt{30}}$, $\frac{1}{\sqrt{30}}$, $\frac{-5}{\sqrt{30}}$	d) $\frac{2}{\sqrt{30}}$, $\frac{1}{\sqrt{30}}$, $\frac{5}{\sqrt{30}}$	
19.	Let $ \vec{a} $ = 7, $ \vec{b} $ = 11 and $ \vec{a} + \vec{b} = 10\sqrt{3}$.	· · ·	[1]
	What is $ ec{a} - ec{b} $ equal to?		
	a) $2\sqrt{2}$	b) $2\sqrt{10}$	
	c) 5	d) 10	
20.	If $ec{a}$ and $ec{b}$ are mutually perpendicular unit vectors the	nen $(3\vec{a}+2\vec{b})\cdot(5\vec{a}-6\vec{b})=?$	[1]
	a) 6	b) 12	
	c) 5	d) 3	
21.	What is the area of the rectangle having vertices A, $\hat{\mathbf{i}} + \frac{1}{2}\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$, $\hat{\mathbf{i}} - \frac{1}{2}\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ and $-\hat{\mathbf{i}} - \frac{1}{2}\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$?	B, C and D with position vectors $-\hat{\mathbf{i}}+rac{1}{2}\hat{\mathbf{j}}+4\hat{\mathbf{k}}$,	[1]
	a) $\frac{1}{2}$ sq units	b) 1 sq units	
	c) 2 sq units	d) 4 sq units	
22.	If $ ec{a} =3$ and $-1\leq k\leq 2$, then $ kec{a} $ lies in the int	terval.	[1]
	a) [- 3, 6]	b) [3, 6]	
	c) [0, 6]	d) [1, 2]	
23.	If \vec{a} and \vec{b} are unit vectors inclined at an angle $ heta$, the	on the value of $ ec{a}-ec{b} $ is	[1]
	a) $2\cos\frac{\theta}{2}$	b) $2\sin\frac{\theta}{2}$	
	c) 2 cos	d) $2\sin heta$	
24.	If $ \overrightarrow{\bf a}\times\overrightarrow{\bf b} =\sqrt{3}$ and $\vec a\cdot\vec b=-3$, then angle betwee	n $ec{a}$ and $ec{b}$ is	[1]
	a) $\frac{\pi}{3}$	b) $\frac{\pi}{6}$	
	c) $\frac{2\pi}{3}$	d) $\frac{5\pi}{6}$	
25.	The magnitude of the vector $6\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ is		[1]
	a) 5	b) 12	
	c) 7	d) 1	
26.	If $ec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}$ and $ec{b}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k}$	\hat{k} then the dot product $ec{a}.ec{b}=$	[1]
	a) $a_1b_1-a_2b_2+a_3b_3$	b) $a_1b_1+a_2b_2+a_3b_3$	
	c) $a_1b_1-a_2b_2-a_3b_3$	d) $a_1b_1 + a_2b_2 - a_3b_3$	
27.	If two vectors $ec{a}$ and $ec{b}$ are such that $ ec{a} =2, ec{b} =3$	and $ec{a}\cdotec{b}=4$, then $ ec{a}-2ec{b} $ is equal to	[1]
	a) $2\sqrt{6}$	b) 24	
	c) $2\sqrt{2}$	d) $\sqrt{2}$	
28.	If $ \vec{a} = 10$, $\vec{b} = 2$ and $\vec{a} \cdot \vec{b} = 12$, then what is the value	ue of $ ec{a} imesec{b} $?	[1]
	a) 20	b) 24	
	c) 16	d) 12	

$$\begin{array}{c} \text{c) } 7(\hat{i} \ and - 6\hat{j} \) \ d) - 7(\hat{i} \ and \ 6\hat{j} \) \ d) - 7(\hat{i} \ and \ 6\hat{j} \) \ d) \\ \text{If } \vec{a} \cdot \hat{i} = \vec{a} \cdot (\hat{i} + \hat{j}) = \vec{a} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1, \text{ then } \vec{a} = \\ \text{a) } \hat{i} \\ \text{b) } \vec{0} \\ \text{c) } \hat{j} \\ \text{d) } \hat{i} + \hat{j} + \hat{k} \\ \end{array}$$

$$41. \quad \text{The unit vector perpendicular to the plane passing through point } P(\hat{i} - \hat{j} + 2\hat{k}), Q(2\hat{i} - \hat{k}) \text{ and } R(2\hat{j} + \hat{k}) \text{ is } \text{III} \\ \text{a) } \frac{1}{6}(2\hat{i} + \hat{j} + \hat{k}) \\ \text{b) } 2\hat{i} + \hat{j} + \hat{k} \\ \text{c) } \frac{1}{\sqrt{6}}(2\hat{i} + \hat{j} + \hat{k}) \\ \text{d) } \sqrt{6}(2\hat{i} + \hat{j} + \hat{k}) \\ \text{42. Find the direction cosines of the vector } \hat{i} + 2\hat{j} + 3\hat{k} \\ \text{a) } \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{34}}, \frac{3}{\sqrt{34}} \\ \text{c) } \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{34}}, \frac{3}{\sqrt{34}} \\ \text{d) } - \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{34}} \\ \text{d) } - \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{34}}, \frac{3}{\sqrt{34}}, \frac{3}{\sqrt{34}} \\ \text{d) } - \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{34}}, \frac{3}{\sqrt{34}}, \frac{3}{\sqrt{34}}, \frac$$

c) $\vec{a} + \vec{b} + \vec{c}$

d) $\vec{b} + \vec{c}$

For any three vectors $\vec{a}, \vec{b}, \vec{c}$ the expression $(\vec{a}-\vec{b})\cdot((\vec{b}-\vec{c})\times(\vec{c}-\vec{a}))$ equals. 48.

[1]

a) $[\vec{a}\vec{b}\vec{c}]$

b) $2[\vec{a}\vec{b}\vec{c}]$

c) None of these

d) $[\vec{a}\vec{b}\vec{c}]^2$

If $\hat{i}, \hat{j}, \hat{k}$ are unit vectors, then 49.

a) $\hat{i} \times (\hat{j} \times \hat{k}) = 1$

b) $\hat{i} \cdot \hat{j} = 1$

c) \hat{i} . $\hat{i}=1$

d) $\hat{i} imes \hat{j} = 1$

 $\vec{a} + \vec{b} + \vec{c} = 0$ such that $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$. 50.

[1]

[1]

What is the angle between \vec{a} and \vec{b} ?

	a) $\frac{1}{3}$	b) $\frac{\pi}{2}$	
	c) $\frac{\pi}{4}$	d) $\frac{\pi}{6}$	
51.	If \vec{a}, \vec{b} and \vec{c} are unit vector such that $\vec{a} + \vec{b} + \vec{c} = 0$	Then $(ec{a}.ec{b}+ec{b}.ec{c}+ec{c}.ec{a})=$	[1]
	a) $\frac{1}{2}$	b) $\frac{3}{2}$	
	c) $\frac{-3}{2}$	d) $\frac{-1}{2}$	
52.	Let a vector \vec{r} make angles 60°, 30° with X and Y-axe	es, respectively. What are the direction cosines of \vec{r} ?	[1]
	a) $<rac{1}{\sqrt{2}},rac{1}{\sqrt{2}},0>$	$\mathrm{b})<\tfrac{1}{2},\tfrac{\sqrt{3}}{2},0>$	
	$\mathrm{C})<-\tfrac{1}{2},\tfrac{\sqrt{3}}{2},0>$	$d)<\tfrac{1}{2},-\tfrac{\sqrt{3}}{2},0>$	
53.	If $ ec{a} =2$ and $ ec{b} $ = 3, then $ ec{a} imesec{b} ^2+ ec{a}\cdotec{b} ^2$ is		[1]
	a) 64	b) 72	
	c) 36	d) 48	
54.	→	$=rac{\sqrt{2}}{3}, ext{ then } \vec{a} imes \vec{b} ext{ is a unit vector if the angle between}$	[1]
	$ec{a}$ and b is		
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{3}$	
	c) $\frac{\pi}{6}$	d) $\frac{\pi}{2}$	
55.	If $ ec{a} =4$ and $-3\leq \lambda \leq 2$, then the range of $ \lambda ec{a} $ i	S	[1]
	a) [0, 12]	b) [0, 8]	
	c) [8, 12]	d) [-12, 8]	
56.	The angle between two vectors $ec{a}$ and $ec{b}$ with magnitu	des $\sqrt{3}$ and 4, respectively, and $ec{a}\cdotec{b}=2\sqrt{3}$ is	[1]
	a) $\frac{\pi}{2}$	b) $\frac{5\pi}{2}$	
	c) $\frac{\pi}{6}$	d) $\frac{\pi}{3}$	
57.	If in a $\triangle { m ABC}$, $A=(0,0), B=(3,3\sqrt{3})$, $C=(-$	$3\sqrt{3},3)$, then the vector of magnitude $2\sqrt{2}$ units directed	[1]
	along AO, where O is the circumcentre of \triangle ABC, then $\overset{ ightarrow}{AO}$ is		
		b) $(1-\sqrt{3})\hat{i}+(1+\sqrt{3})\hat{j}$	
		d) $(1+\sqrt{3})\hat{i}+(\sqrt{3}-1)\hat{j}$	
58.	What is the value of m, if the vectors $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{i}}$	$+2\hat{f j}-3\hat{f k}$ and $3\hat{f i}+m\hat{f j}+5\hat{f k}$ are coplanar?	[1]
	a) -2	b) 4	
	c) 2	d) -4	
59.	The projection of vector $ec{a}=2\hat{i}-\hat{j}+\hat{k}$ along $ec{b}=$	$\hat{i}+2\hat{j}+2\hat{k}$ is	[1]
	a) 2	b) $\frac{1}{3}$	
	c) $\sqrt{6}$	d) $\frac{2}{3}$	
60.	If \vec{a} is a non zero vector of magnitude 'a' and λ a non	n zero scalar, then $\lambda ec{a}$ is a unit vector if	[1]
	a) $a = \lambda $	b) $a = \frac{1}{ \lambda }$	

6/8

c) $\lambda=1$

d) $\lambda=-1$

- 71. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then the value of λ is
 - a) 9

b) 8

c) 11

- d) 7
- 72. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\left(2\vec{a} + \vec{b}\right)$ and $\left(\vec{a} 3\vec{b}\right)$ externally in the ratio 1 : 2. Also, show that P is the mid point of the line segment RQ.
 - a) $5\vec{a}+5\vec{b}$

b) $5\vec{a} + 3\vec{b}$

c) $3\vec{a}+3\vec{b}$

- d) $3\vec{a}+5\vec{b}$
- 73. If $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = 0$, then which one of the following is correct?
 - a) \vec{a} is parallel to \vec{b}

b) $\vec{a} = 0$ or $\vec{b} = 0$

c) \vec{a} is perpendicular to \vec{b}

- d) $ec{a}$ and $ec{b}
 eq 0$
- 74. The area of a triangle with vertices A, B, C is given by
 - a) $|\overrightarrow{AB} \times \overrightarrow{AC}|$

b) $\frac{1}{8} |\overrightarrow{AC} \times \overrightarrow{AB}|$

c) $\frac{1}{4} |\overrightarrow{AC} \times \overrightarrow{AB}|$

d) $\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$

- 75. Projection vector of \vec{a} on \vec{b} is
 - a) $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

b) $\left(\frac{\vec{a}\cdot\vec{b}}{|\vec{b}|^2}\right)\vec{b}$

c) $\left(\frac{\vec{a}\cdot\vec{b}}{\left|\vec{a}\right|^{2}}\right)\hat{b}$

d) $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$

[1]

[1]

[1]