

ABHINAV ACADEMY

UDUPI

CET25M11 THREE DIMENSIONAL GEOMETRY

Class 12 - Mathematics

Time Allowed: 1 hour and 30 minutes

Maximum Marks: 62

1. If the direction ratios of a line are 2, 3 and -6, then direction cosines of the line making obtuse angle with Y-axis [1] are

a)
$$\frac{-2}{7}, \frac{3}{7}, \frac{-6}{7}$$

b)
$$\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$$

c)
$$\frac{-2}{7}, \frac{-3}{7}, \frac{6}{7}$$

d)
$$\frac{-2}{7}, \frac{-3}{7}, \frac{-6}{7}$$

2. The lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$ are

[1]

a) parallel

b) intersecting

c) skew

d) coincident

3. A line makes equal angles with co-ordinate axis. Direction cosines of this line are

[1]

a)
$$\pm \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

b)
$$\pm \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

c)
$$\pm (1, 1, 1)$$

d)
$$\pm \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$$

4. Find the angle between the following pairs of lines: $\vec{r}=2\hat{i}-5\hat{j}+\hat{k}+\lambda\left(3\hat{i}+2\hat{j}+6\hat{k}.\right)$ and $\vec{r}=7\hat{i}-6\hat{k}$ [1] $+\mu\left(\hat{i}+2\hat{j}+2\hat{k}.\right)$, $\lambda,\mu\in R$

a)
$$\theta = \cos^{-1}(\frac{19}{21})$$

b)
$$\theta = \sin^{-1}\left(\frac{19}{21}\right)$$

c)
$$heta=\cot^{-1}\left(rac{19}{21}
ight)$$

d)
$$\theta = \tan^{-1}\left(\frac{19}{21}\right)$$

5. The direction cosines of the line passing through the following points (-2, 4, -5),(1, 2, 3) is: [1]

a)
$$\frac{-3}{\sqrt{77}}$$
, $\frac{-2}{\sqrt{77}}$, $\frac{-8}{\sqrt{77}}$

b)
$$\frac{-3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$$

c)
$$\frac{3}{\sqrt{77}}$$
, $\frac{-2}{\sqrt{77}}$, $\frac{8}{\sqrt{77}}$

d)
$$\frac{3}{\sqrt{77}}$$
, $\frac{-2}{\sqrt{77}}$, $\frac{-8}{\sqrt{77}}$

6. The cartesian equation of a line is given by $\frac{2x-1}{\sqrt{3}} = \frac{y+2}{2} = \frac{z-3}{3}$

The direction cosines of the line is

a)
$$\frac{\sqrt{3}}{\sqrt{55}}, \frac{-4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$$

b)
$$\frac{3}{\sqrt{55}}, \frac{4}{\sqrt{55}}, \frac{6}{\sqrt{55}}$$

c)
$$\frac{\sqrt{3}}{\sqrt{55}}$$
, $\frac{4}{\sqrt{55}}$, $\frac{6}{\sqrt{55}}$

d)
$$\frac{-3}{\sqrt{55}}$$
, $\frac{4}{\sqrt{55}}$, $\frac{6}{\sqrt{55}}$

7. If the points A(-1, 3, 2), B(-4, 2, -2) and C(5, 5, λ) are collinear then the value of λ is

[1]

[1]

a) 5

b) 10

c) 8

d) 7

8. The projections of a line segment on X, Y and Z axes are 12, 4 and 3 respectively. The length and direction cosines of the line segment are

10.	Direction cosines of a line perpendicular to both x-axis and z-axis are:		
	a) 0, 1, 0	b) 0, 0, 1	
	c) 1, 1, 1	d) 1, 0, 1	
11.	If a line makes angles $\alpha, \beta, \gamma, \delta$ with four δ to	diagonals of a cube then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \theta$ is equal	[1]
	a) $\frac{1}{3}$	b) $\frac{2}{3}$	
	c) $\frac{8}{3}$	d) $\frac{4}{3}$	
12.	If a line makes angles $\frac{\pi}{4}$, $\frac{3\pi}{4}$ with X-axis and Y-axis respectively, then the angle which it makes with Z-axis is		
	a) π	b) $\frac{\pi}{2}$	
	c) 0 ₀	d) both $0^{ m o}$ and π	
13.	The direction ratios of the line perpendicular proportional to	ar to the lines $\frac{x-7}{2} = \frac{y+17}{-3} = \frac{z-6}{1}$ and $\frac{x+5}{1} = \frac{y+3}{2} = \frac{z-4}{-2}$ are	[1]
	a) 4, 5, 7	b) -4, 5, 7	
	c) 4, -5, -7	d) 4, -5, 7	
14.	If the line $\frac{x-2}{2k} = \frac{y-3}{3} = \frac{z+2}{-1}$ and $\frac{x-2}{8} = \frac{z+2}{2}$	$\frac{y-3}{6} = \frac{z+2}{-2}$ are parallel, value of k is	[1]
	a) -2	b) 2	
	c) $\frac{1}{2}$	d) 4	
15.	Find the shortest distance between the lines	$s^{\frac{x+1}{7}} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$	[1]
	a) $2\sqrt{31}$	b) $2\sqrt{27}$	
	c) $2\sqrt{23}$	d) $2\sqrt{29}$	
16.	The point of intersection of the line $\frac{x-1}{3}$ =	$=\frac{y+2}{4}=\frac{z-3}{-2}$ and the plane 2x - y + 3z -1 = 0, is	[1]
	a) (10, -10, -3)	b) (10, 10, -3)	
	c) (10, -10, 3)	d) (-10, 10, 3)	
17.	Find the angle between the following pairs of lines: $\ ec{r}=3\hat{i}+\hat{j}-2\hat{k}$ + $\lambda\left(\hat{i}-\hat{j}-2\hat{k}. ight)$ and		
	$ec{r}=2\hat{i}-\hat{j}-56\hat{k}$ + $\mu\left(3\hat{i}-5\hat{j}-4\hat{k}. ight)$, $\lambda,\mu\in R$		
	a) $ heta=\cos^{-1}\left(rac{8}{5\sqrt{3}} ight)$	b) $ heta=\cot^{-1}\left(rac{8}{5\sqrt{3}} ight)$	
	c) $ heta=\sin^{-1}\left(rac{8}{5\sqrt{3}} ight)$	d) $ heta= an^{-1}\left(rac{8}{5\sqrt{3}} ight)$	
18.	If the projections of \overrightarrow{PQ} on OX, OY, OZ are respectively 1, 2, 3 and 4, then the magnitude of \overrightarrow{PQ} is		
	a) 13	b) 169	
		AA	2/7

b) $13; \frac{12}{13}, \frac{4}{13}, \frac{3}{13}$

d) 4

[1]

c) $19; \frac{12}{19}, \frac{4}{19}, \frac{3}{19}$ d) $15; \frac{12}{15}, \frac{14}{15}, \frac{3}{15}$ If the line lies $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ in the plane 2x - 4y + z = 7, then the value of k is

a) $11; \frac{12}{11}, \frac{14}{11}, \frac{3}{11}$

a) 7

c) -7

9.

c) 19	d) 144
C) 19	(1) 144

19. A line is perpendicular to two lines having direction ratios 1, -2, -2 and 0, 2, 1. The direction cosines of the line [1]

a)
$$\frac{1}{3}, \frac{-1}{3}, \frac{2}{3}$$

b)
$$\frac{2}{3}, \frac{1}{3}, \frac{-1}{3}$$

c)
$$\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}$$

d)
$$\frac{-2}{3}, \frac{1}{3}, \frac{2}{3}$$

Find the values of p so that the lines $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles. 20. [1]

a)
$$p = \frac{70}{11}$$

b)
$$p = \frac{70}{12}$$

c)
$$p = \frac{72}{15}$$

d)
$$p = \frac{71}{13}$$

The angle between the lines 2x = 3y = -z and 6x = -y = -4z is 21.

[1]

[1]

22. The direction ratios of two lines are 3, 2, -6 and 1, 2, 2 respectively. The acute angle between these lines is

a)
$$\cos^{-1} \left(\frac{5}{18} \right)$$

b)
$$\cos^{-1}\left(\frac{8}{21}\right)$$

c)
$$\cos^{-1}\left(\frac{5}{21}\right)$$

d)
$$\cos^{-1}\left(\frac{3}{20}\right)$$

If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ are perpendicular to each other then k = ?23. [1]

a)
$$\frac{-10}{7}$$

c)
$$\frac{-5}{7}$$

d)
$$\frac{10}{7}$$

The equation of a line passing through point (2, -1, 0) and parallel to the line $\frac{x}{1} = \frac{y-1}{2} = \frac{2-z}{2}$ is: 24. [1]

a)
$$\frac{x+2}{1} = \frac{y-1}{2} = \frac{z}{2}$$

b)
$$\frac{x+2}{1} = \frac{y-1}{2} = \frac{z}{-2}$$

c)
$$\frac{x-2}{1} = \frac{y+1}{2} = \frac{z}{-2}$$

d)
$$\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{2}$$

c) $\frac{x-2}{1} = \frac{y+1}{2} = \frac{z}{-2}$ d) $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{2}$ If lines $\frac{2x-2}{2k} = \frac{4-y}{3} = \frac{z+2}{-1}$ and $\frac{x-5}{1} = \frac{y}{k} = \frac{z+6}{4}$ are at right angles, then the value of k is 25.

a) -2

b) 4

The direction ratios of the line x - y + z - 5 = 0 = x - 3y - 6 are proportional to 26.

[1]

[1]

b)
$$\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$$

d)
$$\frac{2}{\sqrt{41}}$$
, $\frac{-4}{\sqrt{41}}$, $\frac{1}{\sqrt{41}}$

A line passes through the point A (5, -2. 4) and it is parallel to the vector $(2\hat{i}-\hat{j}+3\hat{k})$. The vector equation of $\,$ 27. the line is

a)
$$ec{r}\cdot(\hat{5i}-\hat{2j}+\hat{4k})=\sqrt{14}$$

b)
$$ec{r}\cdot(\hat{5i}+\hat{2j}-\hat{4k})=\sqrt{12}$$

c)
$$\vec{r} = (5\hat{i} - 2\hat{j} + 4\hat{k}) + \lambda(2\hat{i} - \hat{j} + 3\hat{k})$$

c)
$$ec{r} = (5\hat{i} - 2\hat{j} + 4\hat{k}) + \lambda(2\hat{i} - \hat{j} + 3\hat{k})$$
 d) $ec{r} = (2\hat{i} - \hat{j} + 3\hat{k}) + \lambda(5\hat{i} - 2\hat{j} + 4\hat{k})$

The vector equation of a line which passes through the point (2, -4, 5) and is parallel to the line 28. [1] $\frac{x+3}{3} = \frac{4-y}{2} = \frac{z+8}{6}$ is:

a)
$$ec{r} = (2\hat{i} - 4\hat{j} + 5\hat{k}) + \lambda(3\hat{i} + 2\hat{j} + 6\hat{k})$$

a)
$$\vec{r} = (2\hat{i} - 4\hat{j} + 5\hat{k}) + \lambda(3\hat{i} + 2\hat{j} + 6\hat{k})$$
 b) $\vec{r} = (-2\hat{i} + 4\hat{j} - 5\hat{k}) + \lambda(3\hat{i} - 2\hat{j} - 6\hat{k})$

c)
$$ec{r}=(2\hat{i}-4\hat{j}+5\hat{k})+\lambda(3\hat{i}-2\hat{j}+6\hat{k})$$
 d) $ec{r}=(-2\hat{i}+4\hat{j}-5\hat{k})+\lambda(3\hat{i}+2\hat{j}+6\hat{k})$

d)
$$ec{r}=(-2\hat{i}+4\hat{j}-5\hat{k})$$
 + $\lambda(3\hat{i}+2\hat{j}+6\hat{k})$

29. Equation of a line passing through point (1, 1, 1) and parallel to z-axis is		parallel to z-axis is	[1]
	a) $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$	b) $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{1}$	
	c) $\frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{1}$	d) $\frac{x}{0} = \frac{y}{0} = \frac{z-1}{1}$	
30.	The lines l_1 and l_2 intersect. The shortest distance bet	ween them is	[1]
	a) infinity	b) negative	
	c) positive	d) zero	
31.	If O is the origin, OP = 3 with direction ratios proportional to - 1, 2, - 2 then the coordinates of P are		[1]
	a) (3, 6, -9)	b) (1,2,2)	
	c) (- 1 , 2 , - 2)	d) $(\frac{-1}{9}, \frac{2}{9}, \frac{-2}{9})$	
32.	The angle between a line with direction ratios 2:2:1 and a line joining (3, 1, 4) to (7, 2, 12)		[1]
	a) $\cos^{-1}\left(\frac{2}{3}\right)$	b) $\tan^{-1}(-\frac{2}{3})$ d) $\cos^{-1}(\frac{3}{2})$	
	c) $\tan^{-1}\left(-\frac{3}{2}\right)$	d) $\cos^{-1}(\frac{3}{2})$	
33.	If a vector makes an angle of $\frac{\pi}{4}$ with the positive dire	ctions of both x-axis and y-axis, then the angle which it	[1]
	makes with positive z-axis is:		
	a) 0	b) $\frac{\pi}{4}$	
	c) $\frac{3\pi}{4}$	d) $\frac{\pi}{2}$	
34.	An angle between two diagonals of a cube is		[1]
	a) $\cos^{-1}\left(\frac{8}{5}\right)$	b) $\cos^{-1}\left(\frac{1}{3}\right)$ d) $\cos^{-1}\left(\frac{9}{5}\right)$	
	c) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$	d) $\cos^{-1}\left(\frac{9}{5}\right)$	
35.	The angle between the lines $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{2}$ and	$\frac{x-1}{-\sqrt{3}-1} = \frac{y-1}{\sqrt{3}-1} = \frac{z-1}{4}$ is	[1]
	a) $\frac{\pi}{3}$	b) $\frac{\pi}{4}$	
	c) $\frac{\pi}{6}$	d) $\cos^{-1} \left(\frac{1}{65} \right)$	
36.		, (c - a), (a - b) respectively. The angle between these lines	[1]
	is		
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{4}$	
	c) $\frac{\pi}{3}$	d) $\frac{3\pi}{4}$	
37.	Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector $3\hat{i}+2\hat{j}-2\hat{j}$		[1]
	a) $ec{r}=\hat{i}+2\hat{j}+3\hat{k}$ + $\lambda\left(3\hat{i}+2\hat{j}-2\hat{k}. ight)$,	b) $ec{r}=\widehat{2i}+2\hat{j}+3\hat{k}$ + $\lambda\left(3\hat{i}+2\hat{j}-2\hat{k}. ight)$	
	$\lambda \in R$	$\lambda \in R$	
	c) $ec{r}=4\hat{i}+2\hat{j}+3\hat{k}$ + $\lambda\left(3\hat{i}+2\hat{j}-2\hat{k}. ight)$	d) $ec{r}=3\hat{i}+2\hat{j}+3\hat{k}$ + $\lambda\left(3\hat{i}+2\hat{j}-2\hat{k}. ight)$	
	$\lambda \in R$	$\lambda \in R$	_
38.	The vector equation of the x-axis is given by		[1]
	a) $ec{r}=\hat{j}+\hat{k}$	b) $ec{r}=\hat{j}-\hat{k}$	
	c) $ec{r}=\hat{i}$	d) $ec{r}=\lambda \hat{i}$	

5/7

If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the 52. [1] direction cosines of the line are

- b) $\sin \alpha$, $\sin \beta$, $\sin \gamma$ a) $\tan \alpha$, $\tan \beta$, $\tan \gamma$ d) $\cos^2 \alpha$, $\cos^2 \beta$, $\cos^2 \gamma$ c) $\cos \alpha$, $\cos \beta$, $\cos \gamma$
- The Cartesian equations of a line are $\frac{x-2}{2}=\frac{y+1}{3}=\frac{z-3}{-2}$. What is its vector equation? [1] 53.
 - b) $ec{r}=(2\hat{i}+3\hat{j}-2\hat{k})\!+\!\lambda(2\hat{i}-\hat{j}+3\hat{k})$ d) $ec{r}=(2\hat{i}+3\hat{j}-2\hat{k})$ a) $\vec{r} = (2\hat{i} - 3\hat{j} - 2\hat{k})$
 - c) $ec{r}=(2\hat{i}-\hat{j}+3\hat{k})\!+\!\lambda(2i+3j-2k)$
- The straight line $\frac{x-2}{3} = \frac{y-3}{1} = \frac{z+1}{6}$ is 54. [1]
 - b) perpendicular to the z-axis a) parallel to the y-axis
- [1] 55.
- c) parallel to the x-axis $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4} \text{ and } \frac{x-1}{1} = \frac{y+2}{2} = \frac{z-3}{-3} \text{ is}$ b) 60°
 - c) 30° d) 90°
- The Cartesian equations of a line are $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-5}{-1}$. Its vector equation is [1] 56. a) $\vec{r} = (\hat{i} - 2\hat{j} + 5\hat{k}) + \lambda(2\hat{i} + 3\hat{j} - \hat{k})$ b) $\vec{r} = (2\hat{i} + 3\hat{j} - \hat{k}) + \lambda(\hat{i} - 2\hat{j} + 5\hat{k})$
 - d) $ec{r}=(\hat{i}-2\hat{j}+5\hat{k})\!+\!\lambda(2\hat{i}-3\hat{j}-4\hat{k})$
 - c) $ec{r}=(\hat{i}-2\hat{j}+5\hat{k})\!+\!\lambda(2\hat{i}+3\hat{j}-4\hat{k})$
- If the direction ratios of a line are proportional to 1, 3, 2, then its direction cosines are 57. [1]
 - b) $-\frac{1}{\sqrt{14}}, -\frac{2}{\sqrt{14}}, -\frac{3}{\sqrt{14}}$ a) $\frac{1}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$
- c) $\frac{1}{\sqrt{14}}$, $-\frac{3}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$ d) $-\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$ The angle between the lines $\vec{r}=(3\hat{i}+\hat{j}-2\hat{k})+\lambda(\hat{i}-\hat{j}-2\hat{k})$ and $\vec{r}=(2\hat{i}-\hat{j}-5\hat{k})+\mu(3\hat{i}-5\hat{j}-4\hat{k})$ 58.
- - a) $\cos^{-1}\left(\frac{5\sqrt{3}}{8}\right)$ b) $\cos^{-1}\left(\frac{6\sqrt{2}}{5}\right)$
 - c) $\cos^{-1} \left(\frac{8\sqrt{3}}{15} \right)$ d) $\cos^{-1}\left(\frac{5\sqrt{2}}{6}\right)$

a) k > 0

- [1] 59. If the directions cosines of a line are k,k,k, then

b) k = 1

c) 0 < k < 1

- d) $k=rac{1}{\sqrt{3}}$ or $k=-rac{1}{\sqrt{3}}$
- 60. The direction ratios of a line parallel to z-axis are:
 - a) < 0, 0, 0 >

b) < 1, 1, 0 >

c) < 1, 1, 1 >

- d) < 0, 0, 1 >
- 61. The angle between two lines having direction ratios 1, 1, 2 and $(\sqrt{3}-1)$, $(-\sqrt{3}-1)$, 4 is
- [1]

[1]

a) $\frac{\pi}{4}$

b) $\frac{\pi}{3}$

c) $\frac{\pi}{6}$

- d) $\frac{\pi}{2}$
- 62. If the direction cosines of a line are $(\frac{1}{a}, \frac{1}{a}, \frac{1}{a})$, then:

[1]

a) 0 < a < 1

b) a > 2

c) a = $\pm\sqrt{3}$

d) a > 0