

ABHINAV ACADEMY

UDUPI

CET25M13

Class 12 - Mathematics

Time Allowed: 1 hour and 30 minutes

Maximum Marks: 75

1. If
$$E_1$$
 and E_2 are two independent events, then P $(E_1 \cap E_2)$ is equal to [1]
a) $P(E_1) + P(E_2)$ (b) $P(E_1) + P(E_2) + P(E_1 + \cup E_2)$
c) $P(E_1)P(E_2)$ (d) $P(E_1) - P(E_2)$
2. If A and B are such events that $P(A) > 0$ and $P(B) \neq 1$, then $P(A'|B)$ equals. [1]
a) $\frac{1 - P(A \cup B)}{P(B)}$ (b) $P(A') / P(B')$
c) $1 - P(A \cup B)$ (d) $1 - P(A' \cup B)$
3. If A and B are independent events such that $P(A) = \frac{1}{9}$, $P(A \cup B) = \frac{7}{40}$, then what is $P(\bar{B})$ equal to? [1]
a) $\frac{3}{8}$ (b) $\frac{7}{9}$
c) $\frac{3}{7}$ (d) $\frac{2}{7}$
4. If A and B are two independent events such that $P(A) = 0.3$, $P(A \cup B) = 0.5$, then $P(A \setminus B) - P(B \setminus A) =$ [1]
a) $\frac{2}{7}$ (c) $\frac{1}{70}$ (d) $\frac{3}{35}$
5. If $P(A) = \frac{3}{5}$ and $P(B) = \frac{1}{5}$, find $P(A \cap B)$ if A and B are independent events. [1]
a) $\frac{7}{25}$ (b) $\frac{3}{25}$ (c) $\frac{3}{25}$ (c) $\frac{1}{25}$ (d) $\frac{8}{25}$
6. If A and B are events such that $P(A|B) = P(B|A)$, then
a) $A \subset B$ but $A \neq B$ (b) $A = B$
c) $A \cap B = \emptyset$ (d) $P(A) = P(B)$
7. If E and F are independent, then ______ [1]
a) $P(E \cap F) = P(E)P(F|F)$ (b) $P(E \cap F) = P(E)P(F)$
c) $P(E \cap F) = P(E)P(F|F)$ (d) $P(E \cap F) = P(E)P(F)$
c) $P(E \cap F) = P(E)P(F|E)$ (d) $P(E \cap F) = P(E)P(F)$
5. A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement the probability of getting exactly one red ball is
a) $\frac{45}{50}$ (b) $\frac{15}{50}$

a)
$$\frac{45}{196}$$
 b) $\frac{15}{56}$
c) $\frac{15}{29}$ d) $\frac{135}{392}$

- 9. Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without [1] consulting others. The probability that all the three apply for the same house is
 - a) $\frac{1}{4}$ b) $\frac{4}{15}$

1/8

	c) $\frac{1}{9}$	d) $\frac{1}{3}$	
10.	Two independent events A and B have P(A) =	$=\frac{1}{3}$ and P(B) $=\frac{3}{4}$. What is the probability that exactly one of the	[1]
	two events A or B occurs?		
	a) $\frac{5}{6}$	b) $\frac{7}{12}$	
	c) $\frac{1}{4}$	d) $\frac{5}{12}$	
11.	Two numbers are selected at random from int	tegers 1 through 9. If the sum is even, what is the probability that	[1]
	both numbers are odd?		
	a) $\frac{5}{8}$	b) $\frac{1}{6}$	
	c) $\frac{4}{9}$	d) $\frac{2}{3}$	
12.	If A and B are independent events such that F	$P(A) = 0.4, P(B) = x \text{ and } P(A \cup B) = 0.5, \text{ then } x = ?$	[1]
	a) 0.1	b) $\frac{1}{6}$	
	c) $\frac{1}{8}$	d) $\frac{4}{5}$	
13.	If the probability for A to fail in an examinati	ion is 0.2 and that for B is 0.3, then the probability that either A	[1]
	fails or B fails is		
	a) 0.08	b) 0.44	
	c) 0.5	d) 0.06	
14.	Let A and B be independent events with $P(A) = 0.3$ and $P(B) = 0.4$. Find $P(B A)$.		
	a) 0.5	b) 0.4	
	c) 0.2	d) 0.3	
15.	Let A and B be two events such that $P(A) = \frac{1}{2}$	$rac{3}{8}$, P(B) = $rac{5}{8}$ and P(A \cup B) = $rac{3}{4}$. Then $P(A B) \cdot P(A'/B)$ is	[1]
	equal to		
	a) $\frac{2}{5}$	b) $\frac{6}{25}$	
	c) $\frac{3}{10}$	d) $\frac{3}{8}$	
16.	Let A and B be two events. If P (A) = 0.2, P ((B) = 0.4, P (AUB) = 0.6, then P (A B) is equal to	[1]
	a) 0.5	b) 0.8	
	c) 0.3	d) 0	
17.	From each of the four married couples, one o	f the partners is selected at random. The probability that those	[1]
	selected are of the same sex is		
	a) $\frac{1}{8}$	b) $\frac{1}{16}$	
	c) $\frac{1}{2}$	d) $\frac{1}{4}$	
18.	In a certain town, 40% persons have brown h	air, 25% have brown eyes, and 15% have both. If a person selected	[1]
	at random has brown hair, the chance that a p	erson selected at random with brown hair is with brown eyes	
	a) $\frac{1}{3}$	b) $\frac{3}{20}$	
	c) $\frac{3}{8}$	d) $\frac{2}{3}$	
19.	If A and B are two independent events with F	$P(A) = \frac{1}{3}$ and $P(B) = \frac{1}{4}$, then $P(B' A)$ is equal to:	[1]

2/8

	a) $\frac{1}{3}$	b) $\frac{3}{4}$	
	c) $\frac{1}{4}$	d) 1	
20.	If $P(A) = rac{1}{4}, P(B) = rac{1}{3}$ and $P(A \cap B) = rac{1}{5}$, then	n $P(ar{B}/ar{A})$ = ?	[1]
	a) $\frac{37}{45}$	b) $\frac{11}{45}$	
	c) $\frac{11}{15}$	d) $\frac{37}{60}$	
21.	If two events are independent, then		[1]
	a) None of these	b) they must be mutually exclusive	
	 c) they must be mutually exclusive and the sum of their probabilities must be equal to 1 both are correct 	d) the sum of their probabilities must be equal to 1	
22.	If A and B are any two events such that $P(A) + P(B)$	- $P(A \text{ and } B) = P(A)$, then	[1]
	a) P(B A) = 1	b) P(A B) = 1	
	c) $P(B A) = 0$	d) $P(A B) = 0$	
23.	If P(B) = $\frac{3}{5}$, $P(\frac{A}{B}) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$, then P	$P(A \cup B)' + P(A' \cup B) =$	[1]
	a) $\frac{1}{5}$	b) $\frac{4}{5}$	
	c) $\frac{1}{2}$	d) 1	
24.	Two events A and B will be independent, if		[1]
	a) A and B are mutually exclusive	b) $P(A) + P(B) = 1$	
	c) $P(A'B') = [1 - P(A)] [1 - P(B)]$	d) $P(A) = P(B)$	
25.	An unbiased die is tossed twice. What is the probability	ity of getting a 4, 5 or 6 on the first toss and a 1, 2, 3 or 4	[1]
	on the second toss?		
	a) $\frac{2}{3}$	b) $\frac{3}{4}$	
	c) $\frac{1}{3}$	d) $\frac{5}{6}$	
26.	Two cards are drawn from a well shuffled deck of 52	playing cards with replacement. The probability, that both	[1]
	cards are queens, is		
	a) $\frac{1}{13} \times \frac{1}{13}$	b) $\frac{1}{13} \times \frac{4}{51}$	
	c) $\frac{1}{13} + \frac{1}{13}$	d) $\frac{1}{13} \times \frac{1}{17}$	
27.	A problem in Statistics is given to three students A, E and $\frac{1}{2}$, respectively. The probability that the problem	B and C whose chances of solving it independently are $\frac{1}{2}, \frac{1}{3}$ will be solved, is	[1]
	a) $\frac{3}{4}$	b) $\frac{1}{2}$	
	C) $\frac{11}{12}$	d) $\frac{1}{12}$	
28.	Let A and B be independent events with $P(A) = 0.3$ a	nd $P(B) = 0.4$. Find $P(A \cup B)$.	[1]
	a) 0.62	b) 0.58	
	c) 0.51	d) 0.55	
29.	If E ₁ , E ₂ ,,E _n are mutually exclusive and exhaustiv	e events associated with a samplespace, and A is any event	[1]
	of non zero probability, then		-

3/8

a)
$$P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{i=1}^{n} P(E_i)P(A|E_i)}$$

b) $P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{i=1}^{n} P(E_i)P(A|E_i)}$
c) $P(E_i|A) = \frac{P(E_i)P(E_i|A)}{\sum_{i=1}^{n} P(E_i)P(A|E_i)}$
d) $P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{i=1}^{n} P(E_i)P(A|E_i)}$

30. In answering a question on a multiple-choice test, a student either knows the answer or guesses. Let $\frac{3}{4}$ be the [1] probability that he knows the answer and $\frac{1}{4}$ be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability $\frac{1}{4}$. What is the probability that the student knows the answer given that he answered it correctly?

a)
$$\frac{11}{13}$$
 b) $\frac{7}{13}$
c) $\frac{12}{13}$ d) $\frac{9}{13}$

A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a [1] 31. statement, is

a)
$$\frac{2}{5}$$
 b) $\frac{13}{20}$
c) $\frac{7}{20}$ d) $\frac{3}{5}$

c)
$$\frac{1}{20}$$
 d)

A and B are two students. Their chances of solving a problem correctly are $\frac{1}{3}$ and $\frac{1}{4}$, respectively. If the 32. [1] probability of their making a common error is, $\frac{1}{20}$ and they obtain the same answer, then the probability of their answer to be correct is

a)
$$\frac{1}{12}$$

c)
$$\frac{10}{13}$$

a) $\frac{1}{12}$ c) $\frac{10}{13}$ If A and B are two events such that $P(A) = \frac{4}{5}$, and $P(A \cap B) = \frac{7}{10}$, then P (B / A) = 33. [1]

a)
$$\frac{1}{10}$$
 b) $\frac{1}{20}$
c) $\frac{7}{8}$ d) $\frac{1}{8}$

34. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probabilities [1] of an accident involving a scooter driver, car driver, and truck driver are 0.01, 0.03, and 0.15, respectively. One of the insured persons meets with an accident. The probability that the person is a scooter driver, is

a)
$$\frac{1}{52}$$

c) $\frac{15}{52}$
b) $\frac{19}{52}$
d) $\frac{3}{52}$

The probabilities of A, B and C of solving a problem are $\frac{1}{6}, \frac{1}{5}$ and $\frac{1}{3}$ respectively. What is the probability that 35. [1] the problem is solved?

a) $\frac{5}{9}$		b) <u>4</u> 9
c) $\frac{1}{3}$	Y'	d) $\frac{1}{7}$

If P(A) = 0.4, P(B) = 0.8 and P(B | A) = 0.6, then $P(A \cup B)$ is equal to 36.

- a) 0.48 b) 0.96
- c) 0.3 d) 0.24
- 37. A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is [1] selected at random and a ball is drawn from it. Then, the probability of the chosen ball to be white is

a)
$$\frac{2}{15}$$
 b) $\frac{7}{15}$

c) $\frac{8}{15}$ d) $\frac{14}{15}$ [1]

38. In a class, 60% of the students read mathematics, 25% biology and 15% both mathematics and biology. One [1] student is selected at random. What is the probability that he reads mathematics, if it is known that he reads biology?

a) $\frac{3}{8}$	b) $\frac{2}{5}$
c) $\frac{3}{5}$	d) <u>5</u>

39. If A and B are independent events, then $P(\bar{A}/\bar{B})$ = ?

a)
$$1 - P(A / B)$$
 b) $1 - P(A)$

c) 1 - P(B) d) - P(
$$A / B$$
)

40. If A and B are two events such that $P(A) \neq 0$ and P(B|A) = 1, then

a)
$$B \subset A$$
 b) $B = \phi$

c)
$$A = \phi$$
 d) $A \subset B$

41. A machine operates only when all of its three components function. The probabilities of the failures of the first, **[1]** second and third component are 0.2, 0.3 and 0.5 respectively. What is the probability that the machine will fail?

	a) 0.007	b) 0.07	
	c) 0.72	d) 0.70	
42.	If $P(A) = \frac{6}{11}$, $P(B) = \frac{5}{11}$ and $P(A \cup B) = \frac{7}{11}$.fin	nd P(A \cap B)	[1]
	a) $\frac{4}{13}$	b) $\frac{5}{17}$	
	c) $\frac{5}{11}$	d) $\frac{4}{11}$	
43.	If $P(A) = \frac{4}{5}$, and $P(A \cap B) = \frac{7}{10}$ then $P(B A)$.) is equal to	[1]
	a) $\frac{7}{8}$	b) $\frac{17}{20}$	
	c) $\frac{1}{10}$	d) $\frac{1}{8}$	
44.	For two mutually exclusive events A and B,	P(A) = 0.2 and P($ar{A} \cap B$) = 0.3. What is P(A (A \cup B)) equal to?	[1]
	a) $\frac{2}{7}$	b) $\frac{2}{5}$	
	c) $\frac{2}{3}$	d) $\frac{1}{2}$	
45.	Let A and B be independent events with P(A	A) = 0.3 and P(B) = 0.4. Find P(A \cap B)	[1]
	a) 0.15	b) 0.10	
	c) 0.14	d) 0.12	
46.	If $P(A) = \frac{1}{2}$, $P(B) = 0$, then $P(A B)$ is		[1]
	a) 0	b) not defined	
	c) $\frac{1}{2}$	d) 1	

47. There are 2 boxes. One box contains 3 white balls and 2 black balls. The other box contains 7 yellow balls and 3 **[1]** black balls. If a box is selected at random and from it, a ball is drawn, the probability that the ball drawn is black is

a)
$$\frac{1}{3}$$

b) $\frac{1}{20}$
c) $\frac{7}{20}$
d) $\frac{1}{5}$

5/8

[1]

[1]

48.	8. A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting even number on the die and a spade card is		[1]
	a) $\frac{1}{2}$	b) ¹ / ₄	
	c) $\frac{3}{4}$	d) $\frac{1}{8}$	
49.	If A and B are events such that $P(A) = \frac{1}{2}, P(B)$	$=rac{7}{12}$ and $P\left(A'\cup B' ight)=rac{1}{4}$, then A and B are	[1]
	a) Independent and mutually exclusive	b) Independent	
	c) None of these	d) Mutually exclusive	
50.	If $P(A \cap B) = \frac{7}{10}$ and $P(B) = \frac{17}{20}$, then $P(\frac{A}{B})$ eq	uals	[1]
	a) $\frac{7}{8}$	b) $\frac{17}{20}$	
	c) $\frac{14}{17}$	d) $\frac{1}{8}$	
51.	If for any two events A and B, $P(A) = \frac{4}{5}$ and $P(A)$	\cap B) = $\frac{7}{10}$, then P $\left(\frac{B}{A}\right)$ is equal to	[1]
	a) $\frac{1}{10}$	b) $\frac{1}{8}$	
	c) $\frac{7}{8}$	d) $\frac{17}{20}$	
52.	If $A \subseteq B$, then which one of the following is not contained by the follo	orrect?	[1]
	a) $P(B/A) = \frac{P(B)}{P(A)}$	b) $P(A/B) = \frac{P(A)}{P(B)}$	
	c) $P(A \cap \overline{B}) = 0$	d) $P(A/(A \cup B)) = \frac{P(A)}{P(B)}$	
53.	The probability that an event E occurs in one trial i	is 0.4. Three independent trials of the experiment are	[1]
	performed. What is the probability that E occurs at	least once?	
	a) 0.936	b) 0.784	
	c) 0.924	d) 0.964	
54.	If A and B are two independent events with $\mbox{P}(A)$	$=rac{3}{5}$ and $P(B)=rac{4}{9}$, then $\mathrm{P}\left(\mathrm{A}'\cap\mathrm{B}' ight)$ equals	[1]
	a) $\frac{2}{9}$	b) $\frac{8}{45}$	
	c) $\frac{4}{15}$	d) $\frac{1}{3}$	
55.	If $P(A) = \frac{2}{5}$, $P(B) = \frac{3}{10}$ and $P(A \cap B) = \frac{1}{5}$, then	$P\left(rac{A'}{B'} ight)\cdot P\left(rac{B'}{A'} ight)$ is equal to	[1]
	a) $\frac{25}{42}$	b) $\frac{5}{6}$	
	c) $\frac{5}{7}$	d) 1	
56.	Two men hit at a target with probabilities $\frac{1}{2}$ and $\frac{1}{3}$, respectively. What is the probability that exactly one of them	[1]
	hits the target?		
	a) $\frac{1}{6}$	b) $\frac{1}{2}$	
	c) $\frac{1}{3}$	d) $\frac{2}{3}$	
57.	The probability that a man will live for 10 more ye probability that neither will be alive in 10 years is	ears is $\frac{1}{4}$ and that his wife will live 10 more years is $\frac{1}{3}$. The	[1]
	2) 11	b) ¹	
	a) $\frac{12}{12}$	$\frac{1}{2}$	
	C) $\frac{3}{12}$	d) $\frac{1}{12}$	

If A and B are events such that P(A) = 0.4, P(B) = 0.8 and P(B/A) = 0.6, then P(A/B) = ?

AA

[1]

6/8

58.

a) 0.3		b) 0.5

c) 0.2 d) 0.4

59. The probability that A speaks the truth is $\frac{4}{5}$ and that of B speaking the truth is $\frac{3}{4}$. The probability that they [1] contradict each other in stating the same fact is:

a)
$$\frac{4}{5}$$
 b) $\frac{1}{5}$
c) $\frac{3}{20}$ d) $\frac{7}{20}$

61.

62.

63.

60. A can hit a target 4 times in 5 shots, B can hit 3 times in 4 shots, and C can hit 2 times in 3 shots. The probability **[1]** that B and C hit and A does not hit is

a) $\frac{5}{12}$	b) $\frac{7}{12}$	
c) $\frac{1}{10}$	d) $\frac{2}{5}$	
If A and B are two events	such that $P\left(\frac{A}{B}\right) = 2 \times P\left(\frac{B}{A}\right)$ and $P(A) + P(B) = \frac{2}{3}$, then $P(B)$ is equal to	[1]
a) $\frac{5}{9}$	b) $\frac{4}{9}$	
c) $\frac{2}{9}$	d) $\frac{7}{9}$	
If A and B are two events	such that $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(\frac{A}{B}) = \frac{1}{4}$ then $P(A' \cap B')$ equals	[1]
a) $\frac{1}{12}$	b) $\frac{3}{16}$	
c) $\frac{1}{4}$	d) $\frac{3}{4}$	
A couple has 2 children. W	That is the probability that both are boys, if it is known that one of them is a boy?	[1]
a) $\frac{1}{3}$	b) $\frac{1}{4}$	

c) $\frac{2}{3}$ 64. If it is given that A and B are two events such that P(B) = $\frac{3}{5}$, $P(\frac{A}{B}) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$, P(B|A') is [1] equal to

a)
$$\frac{1}{5}$$

c) $\frac{1}{2}$
b) $\frac{3}{5}$
d) $\frac{3}{10}$

65. Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in [1] hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is a hostlier?

a)
$$\frac{2}{13}$$

b) $\frac{5}{13}$
c) $\frac{9}{13}$
d) $\frac{3}{13}$

66. A biased coin with probability p, 0 , of heads is tossed until a head appears for the first time. If the**[1]**probability that the number of tosses required is even is 2/5, then p equals

a) $\frac{2}{3}$	b) $\frac{2}{5}$
c) $\frac{1}{3}$	d) $\frac{3}{5}$

A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is [1] selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

	a) $\frac{1}{5}$	b) $\frac{1}{3}$	
	c) $\frac{2}{3}$	d) $\frac{1}{4}$	
68.	If A and B are two independe	ent events such that $P(A) = \frac{1}{3}$ and $P(B) = \frac{1}{4}$, then $P\left(\frac{B'}{A}\right)$ is	[1]
	a) $\frac{1}{8}$	b) 1	
	c) $\frac{3}{4}$	d) $\frac{1}{4}$	
69.	Number X is randomly selec	ted from the set of odd numbers and Y is randomly selected from the set of even	[1]
	numbers of the set {1, 2, 3, 4	4, 5, 6, 7}. Let $Z = (X + Y)$.	
	What is $P(Z = 10)$ equal to?		
	a) $\frac{1}{3}$	b) $\frac{1}{2}$	
	C) $\frac{1}{5}$	d) 0	
70.	You are given that A and B a	are two events such that $P(B) = \frac{3}{5}$, $P(A B) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$, then $P(A)$ equals	[1]
	a) $\frac{1}{2}$	b) $\frac{1}{5}$	
	c) $\frac{3}{5}$	d) $\frac{3}{10}$	
71.	For any two events A and B,	if $P(\bar{A}) = \frac{1}{2}$, $P(\bar{B}) = \frac{2}{3}$ and $P(A \cap B) = \frac{1}{4}$, then $P\left(\frac{\bar{A}}{\bar{B}}\right)$ equals:	[1]
	a) $\frac{1}{4}$	b) $\frac{3}{8}$	
	c) $\frac{8}{9}$	d) $\frac{1}{8}$	
72.	If for two events A and B, P($(A - B) = \frac{1}{5}$ and $P(A) = \frac{3}{5}$, then $P\left(\frac{B}{A}\right)$ is equal to	[1]
	a) $\frac{1}{2}$	b) $\frac{2}{5}$	
	c) $\frac{2}{3}$	d) $\frac{3}{5}$	
73.	A bag contains 3 white, 4 bla	ack and 2 red balls. If 2 balls are drawn at random (without replacement), then the	[1]
	probability that both the balls	s are white is:	
	a) $\frac{1}{18}$	b) $\frac{1}{12}$	
	c) $\frac{1}{24}$	d) $\frac{1}{36}$	
74	A box of oranges is increased	d by examining three randomly colocted oranges drawn without replacement. If all	[1]

74. A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all [1] the three oranges are good, the box is approved for sale, otherwise, it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.

a) $\frac{44}{91}$		b) $\frac{49}{91}$
c) $\frac{47}{91}$	X ⁷	d) $\frac{41}{91}$

- 75. A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box [1] without replacement. The probability of drawing 2 green balls and one blue ball is
 - a) $\frac{1}{28}$ b) $\frac{3}{28}$ c) $\frac{167}{168}$ d) $\frac{2}{21}$