

## ABHINAV ACADEMY

**UDUPI** 

## **CET25M4 DETERMINANTS**

## **Class 12 - Mathematics**

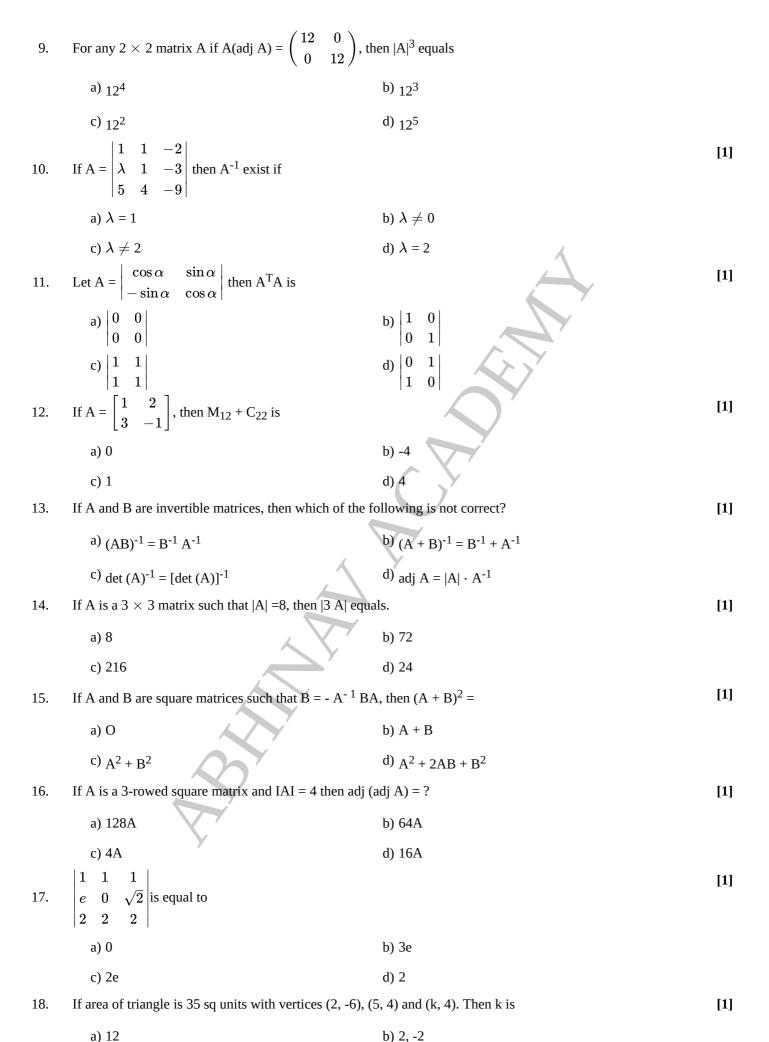
| Time All | owed: 1 hour and 30 minutes                                                                                  | Maximum Marks: 75                                                                                      |  |
|----------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| 1.       | The value of the determinant $\begin{vmatrix} \log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9 \end{vmatrix}$ is | [1]                                                                                                    |  |
|          | a) 0                                                                                                         | b) 15                                                                                                  |  |
|          | c) $\frac{15}{2}$                                                                                            | d) 10                                                                                                  |  |
| 2.       | If A is a non-singular square matrix of order 3 such that $A^2 = 3A$ , then value of $ A $ is                |                                                                                                        |  |
|          | a) 3                                                                                                         | b) 9                                                                                                   |  |
|          | c) -3                                                                                                        | d) 27                                                                                                  |  |
| 3.       | The sum of products of elements of any row with the                                                          | cofactors of corresponding elements is equal to [1]                                                    |  |
|          | a) a <sub>12</sub> A <sub>21</sub> + a <sub>12</sub> A <sub>21</sub> + a <sub>21</sub> A <sub>13</sub>       | b) $a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13}$                                                     |  |
|          | c) a <sub>11</sub> A <sub>11</sub> + a <sub>12</sub> A <sub>12</sub> + a <sub>21</sub> A <sub>13</sub>       | d) a <sub>11</sub> A <sub>11</sub> + a <sub>12</sub> A <sub>13</sub> + a <sub>13</sub> A <sub>12</sub> |  |
| 4.       | For non-singular square matrix A,B and C of the same                                                         | e order $(AB^{-1}C)^{-1} = [1]$                                                                        |  |
|          | a) C <sup>-1</sup> BA <sup>-1</sup>                                                                          | b) CBA <sup>-1</sup>                                                                                   |  |
|          | c) C <sup>-1</sup> B <sup>-1</sup> A <sup>-1</sup>                                                           | d) A <sup>-1</sup> BC <sup>-1</sup>                                                                    |  |
| 5.       | If $A = \begin{bmatrix} 1 & 2 \\ 6 & 12 \end{bmatrix}$ , then A is                                           | [1]                                                                                                    |  |
|          | a) non-singular                                                                                              | b) singular                                                                                            |  |
|          | c) scalar matrix                                                                                             | d) diagonal matrix                                                                                     |  |
| 6.       | If A is a square matrix of order 2, then det (adj A) =                                                       | [1]                                                                                                    |  |
|          | a) $A^2 = 0$                                                                                                 | b) I                                                                                                   |  |
|          | c) <sub>2A</sub> <sup>2</sup>                                                                                | d)  A                                                                                                  |  |
| 7.       | A square matrix A is called singular if det. A is                                                            | [1]                                                                                                    |  |
|          | a) Non–zero                                                                                                  | b) 0                                                                                                   |  |
|          | c) Negative                                                                                                  | d) Positive                                                                                            |  |
| 8.       | If the value of a third-order determinant is 12, then the value of the determinant formed by replacing       |                                                                                                        |  |
|          | element by its cofactor will be                                                                              |                                                                                                        |  |
|          | a) -12                                                                                                       | b) 12                                                                                                  |  |

1/9

[1]

d) 144

c) 13



2/9

```
c) -12, -2 d) -2
```

- 19. If  $A = \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix}$ , then the value of |2A| is
  - a) 3|A|

b) 4|A|

c) |A|

- d) 2|A|
- 20. If the area of a  $\triangle$ ABD is 3 sq. units with vertices A(1, 3), B(0, 0) and D(k, 0), then k is equal to
- [1]

a) 3

b) 2

c)  $\pm 2$ 

- d)  $\pm 3$
- 21. Let  $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ ,  $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$  and  $B = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$ . If AX = B, then X is equal to
- [1]

a)  $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ 

b)  $\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$ 

c)  $\begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$ 

- $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
- 22. If A is an invertible square matrix and k is a non-negative real number then $(kA)^{-1} = ?$

[1]

[1]

[1]

a)  $\frac{1}{k}$  . A<sup>-1</sup>

b) -k.A-1

c) k.A-1

- d) 2k.A-1
- 23. If  $\Delta=\begin{vmatrix}1&a&bc\\1&b&ca\\1&c&ab\end{vmatrix}$  , then the minor  $M_{31}$  is
  - a)  $c(a^2 + b^2)$

b)  $-c(a^2 - b^2)$ 

c)  $c(a^2 - b^2)$ 

- d) c(b<sup>2</sup> a<sup>2</sup>)
- 24. If  $f(x) = \begin{vmatrix} 0 & x-1 & x-2 \\ x+1 & 0 & x-c \\ x+2 & x+c & 0 \end{vmatrix}$ , then
- b) f(3) = 0

a) f(1) = 0c) f(0) = 0

- d) f(2) = 0
- 25. If A, B are two  $n \times n$  non singular matrices, then what can you infer about AB?

[1]

[1]

a) AB is singular

b) (AB)<sup>-1</sup> does not exist

c) AB is non-singular

- d)  $(AB)^{-1} = A^{-1}B^{-1}$
- 26. The determinant  $\begin{vmatrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{vmatrix}$  is
  - a) independent of both  $\theta$  and x

b) independent of x only

c) independent of -x only

- d) independent of  $\theta$  only
- 27. The system of equations, x + 2y = 5, 4x + 8y = 20 has

| 2) | no   | co | lutic | ` T |
|----|------|----|-------|-----|
| aı | 11() | 50 |       | "   |

b) Two solution

c) a unique solution

d) infinitely many solutions

## 28. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then value of adj(AB) is

[1]

a) 
$$\begin{vmatrix} d & b \\ a & c \end{vmatrix}$$

b)  $\begin{vmatrix} d & -b \\ -c & a \end{vmatrix}$ 

c)  $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$ 

d)  $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 

29. If  $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$  and  $A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$  then x = ?.

[1]

a) 1

b) -2

c)  $\frac{1}{2}$ 

d) 2

30. Let a, b,  $c \in \mathbb{R}^+$  then the following system of equation in x, y, z given by  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2} = 1$ ,  $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  [1] and  $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  has

a) No solution

b) Finitely many solutions

c) Unique solution

d) Infinitely many solution

31. For the system of equations:

[1]

$$x + 2y + 3z = 1$$

$$2x + y + 3z = 2$$

$$5x + 5y + 9z = 4$$

- a) there exists infinitely many solution
- b) there is only one solution

c) there is no solution

d) there is two solution

32. If A is a square matrix such that  $A^2 = I$ , then  $(A - I)^3 + (A + I)^3 - 7A$  is equal to

[1]

a) I - A

b) A

c) 3A

d) I + A

33. If A is skew symmetric matrix of order 3, then the value of |A| is:

[1]

a) 9

b) 3

c) 0

d) 27

34. If A is an invertible matrix of order 2, then  $\det(A^{-1})$  is equal to

[1]

a) 0

b)  $\frac{1}{\det(A)}$ 

c) det (A)

d) 1

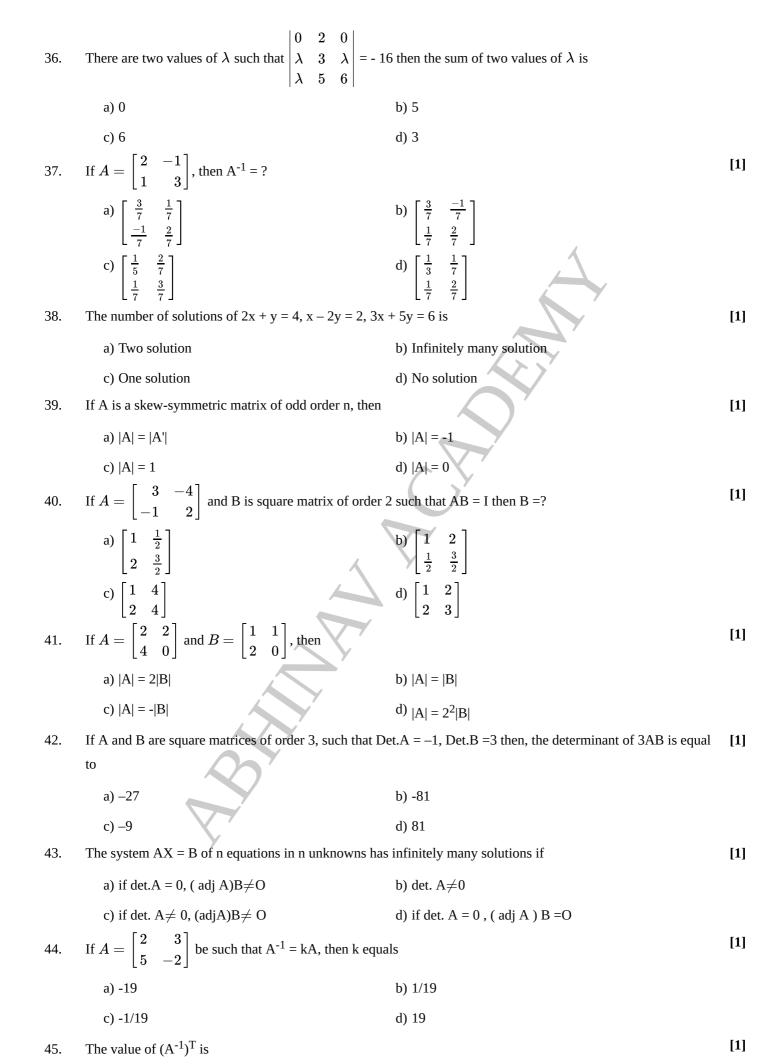
35. Let M and N be two  $3 \times 3$  non-singular skew-symmetric matrices such that MN = NM. If P' denotes the transpose of the matrix P, then  $M^2 N^2 (M'N)^{-1} (MN^{-1})'$  is equal to

a) MN

b) M<sup>2</sup>

c)  $-M^2$ 

d)  $-N^2$ 



5/9

|     | a) A <sup>T</sup>                                                                                                                                                | b) $\left(A^{\mathrm{T}} ight)^{-1}$                                                                     |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|
|     | c) A-1                                                                                                                                                           | d) I                                                                                                     |     |
| 46. | The pair of equations $3x - 5y = 7$ and $6x - 10y = 14$ h                                                                                                        | nave:                                                                                                    | [1] |
|     | a) a unique solution                                                                                                                                             | b) two solutions                                                                                         |     |
|     | c) no solution                                                                                                                                                   | d) infinitely many solution                                                                              |     |
| 47. | A(adj A) is equal to                                                                                                                                             |                                                                                                          | [1] |
|     | a) A                                                                                                                                                             | b) I                                                                                                     |     |
|     | c)                                                                                                                                                               | d) O                                                                                                     |     |
| 48. | $ A I$ If $A = \begin{vmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{vmatrix}$ then $A^3$ is equal to                       |                                                                                                          | [1] |
|     | a) $\begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}$<br>c) $\begin{vmatrix} \frac{3\sqrt{3}}{2} & \frac{1}{8} \\ -\frac{1}{8} & \frac{3\sqrt{3}}{8} \end{vmatrix}$ | b) $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$<br>d) $\begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix}$ |     |
|     |                                                                                                                                                                  |                                                                                                          |     |
| 49. | If A is a square matrix such that $A^2 = A$ , then, det.(A                                                                                                       | (1) =                                                                                                    | [1] |
|     | a) 2 or -2                                                                                                                                                       | b) 0 or - 1                                                                                              |     |
|     | c) 1 or - 1                                                                                                                                                      | d) 0 or 1                                                                                                |     |
| 50. | $A=egin{bmatrix} -2 & 0 & 0 \ 0 & -2 & 0 \ 0 & 0 & -2 \end{bmatrix}$ , then the value of  adj A  is                                                              |                                                                                                          | [1] |
|     | a) 16                                                                                                                                                            | b) -8                                                                                                    |     |
|     | c) 0                                                                                                                                                             | d) 64                                                                                                    |     |
| 51. | The system of linear equations $x + y + z = 2$ , $2x + y - 2$                                                                                                    | -z = 3, $3x + 2y - kz = 4$ has a unique solution if,                                                     | [1] |
|     | a) k = 0                                                                                                                                                         | b) -1 < k < 1                                                                                            |     |
|     | c) -2 < k < 2                                                                                                                                                    | d) $k  eq 0$                                                                                             |     |
| 52. | If A is a matrix of order 3 and $ A  = 8$ , then $ adj A  =$                                                                                                     |                                                                                                          | [1] |
|     | a) 2                                                                                                                                                             | b) 1                                                                                                     |     |
|     | c) 2 <sup>6</sup>                                                                                                                                                | d) <sub>2</sub> <sup>3</sup>                                                                             |     |
|     | $\mid \; 0 \; \; \cos 	heta \; \sin 	heta \mid^2$                                                                                                                |                                                                                                          | [1] |

b) only one solution

b) -1

d) 1

is equal to

If  $\cos 2\theta = 0$ , then  $\left| \cos \theta \right| \sin \theta$ 

a)  $\frac{1}{2}$  c)  $\frac{-1}{2}$ 

a) no solution

 $\sin \theta$ 

0

The equations x + 2y + 2z = 1 and 2x + 4y + 4z = 9 have

 $\cos \theta$ 

53.

54.

c) only two solutions

d) infinitely many solutions

55. If 
$$A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$$
 then det.(adj (adj A)) =

[1]

a) 13

b) 14<sup>4</sup>

c)  $14^2$ 

d) 14<sup>3</sup>

56. If 
$$S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then adj A is

[1]

a)  $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ 

b)  $\begin{bmatrix} -d & -b \\ -c & a \end{bmatrix}$ 

57. Let 
$$\begin{vmatrix} d & c \\ b & a \end{vmatrix}$$

$$x^2 + x \quad 2x - 1 \quad x + 3 \\ 3x + 1 \quad 2 + x^2 \quad x^3 - 3 \\ x - 3 \quad x^2 + 4 \quad 2x \end{vmatrix} = px^7 + qx^6 + rx^5 + sx^4 + tx^3 + ux^2 + vx + w \text{ then which of the following is not}$$

- true?
  - a) w = 21, v = 75

c) p = q = -1

58. The system of equations, 
$$x + y = 2$$
 and  $2x + 2y = 3$  has

[1]

[1]

a) a unique solution

b) finitely many solutions

c) no solution

d) infinitely many solutions

59. The inverse of the matrix 
$$X = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 is:

[1]

a)  $\frac{1}{24} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 

 $\frac{1}{24} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ 

c)  $\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$ 

d)  $\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$ 

60. If A is a square matrix, B is singular matrix of same order, then for a positive integer n, 
$$(A^{-1} BA)^n$$
 equals to [1]

a)  $n(A^{-1}BA)$ 

b) A<sup>n</sup> B<sup>n</sup> A<sup>-n</sup>

c) A-n Bn An

d) A-1Bn A

61. If 
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2 \end{bmatrix}$$
, then aI + bA + 2A<sup>2</sup> equals.

[1]

a) -A

b) none of these

c) adj A

d) A

62. If 
$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$$
, then the cofactor  $A_{21}$  is

- a) -(hc + fg)
- c) fg + hc

d) fg - hc

b) hc - fg

63. If  $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$  then  $A^{-1} = ?$ 

[1]

[1]

[1]

a) -adj A

b) adj A

c) -A

- d) A
- 64. If A is a non singular matrix of order 3, then  $|adj(A^3)|$ =
  - .

a)  $|A|^7$ 

b) |A|<sup>8</sup>

c)  $|A|^{6}$ 

- d) <sub>|A|</sub>9
- 65. If,  $A = \begin{bmatrix} 1 & 4 \\ 3 & 15 \end{bmatrix}$ , then  $|A^{-1}|$  is equal to

a)  $\frac{2}{3}$ 

b)  $\frac{4}{3}$ 

c)  $\frac{1}{3}$ 

- d)  $-\frac{1}{3}$
- 66. The number of solutions of the system of equations:

[1]

- 2x + y z = 7,
- x 3y + 2z = 1,
- x + 4y 3z = 5, is
  - a) 0

b)

c) 2

- d) 3
- 67. If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is

[1]

a) d

b) dn-1

c) dn

- d) dn+1
- 68. The vertices of a a ABC are A(-2, 4), B(2, -6) and C(5, 4). The area of a ABC is

[1]

[1]

a) 17.5 sq units

b) 32 sq units

c) 35 sq units

d) 28 sq units

- 69. Let  $A = \begin{bmatrix} 4 & 2 & -1 \\ 3 & 5 & 7 \\ 1 & 2 & 1 \end{bmatrix}$  then
  - a) Tr(A A') = 20

b) Tr(A + A') = 10

c) Tr(A - A) = 10

- d) Tr(A + A') = 20
- 70. If A is a  $3 \times 3$  matrix and |A| = -2, then value of |A| (adj A) is

[1]

[1]

a) -2

b) 8

c) 2

d) -8

- 71. If  $A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ , then  $A^2$  is:
  - a) 27A

b) 3A

c) 2A

72. The value of the determinant  $\begin{vmatrix} 2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1 \end{vmatrix}$  is:

[1]

[1]

[1]

[1]

a) 49

b) -51

d) I

c) -79

d) 47

73. If the trace of the matrix

 $A = \begin{vmatrix} x-5 & 0 & 2 & 4 \\ 3 & x^2 - 10 & 6 & 1 \\ -2 & 3 & x-7 & 1 \\ 1 & 2 & 0 & -2 \end{vmatrix}$  assumes the value zero, then the value of x equals to

a) 6, 4

b) -6, 4

c) 6, -4

d) -6, -4

74. Let  $P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$ , where  $\alpha \in \mathbb{R}$ , Suppose  $Q[a_{ij}]$  is a matrix such that PQ = kI where  $k \in \mathbb{R}$ ,  $k \neq 0$  and I

is the identity matrix of order 3. If  $q_{23} = -\frac{k}{8}$  and let  $det(Q) = \frac{k^2}{2}$ , then

a)  $4\alpha - k + 8 = 0$ 

b)  $4\alpha - k + 8 = 0$  and  $det(P \text{ adj } Q) = 2^9$ 

c)  $\alpha$  = 0, k = 8

d)  $det(P adj Q) = 2^9$ 

75. If the adjoint of a  $3 \times 3$  matrix P is  $\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$ , then the possible values of the determinant of P is/are

a)  $\pm 1$ 

b) -1

c) 1

d) ±2