

ABHINAV ACADEMY

UDUPI

CET25M6

Class 12 - Mathematics

Time Allowed: 1 hour and 30 minutesMaximum Marks: 7			aximum Marks: 75
1.	If $xy = a^2$ and $S = b^2x + c^2y$ where a, b and c are post	tive constants then the minimum value of S i	is [1]
	a) 2abc	b) bc \sqrt{a}	
	c) 2abc	d) abc	
2.	The maximum value of the function $f(x) = x^3 + 2x^2$ -	4x + 6 exists at	[1]
	a) x = -1	b) x = 1	
	c) x = -2	d) x = 2	
3.	The least value of $f(x) = (e^x + e^{-x})$ is		[1]
	a) 2	b) -2	
	c) 0	d) 1	
4.	Function $f(x) = x - x - 1 $ is monotonically increasing	g when	[1]
	a) x < 1	b) 0 < x < 1	
	c) x < 0	d) x > 1	
5.	The function $f(x) = x^9 + 3x^7 + 64$ is increasing on		[1]
	a) $(-\infty, 0)$	b) R ₀	
	c) (0 , ∞)	d) R	
6.	The maximum value of $f(x) = \frac{x}{4+x+x^2}$ on [-1, 1] is		[1]
	a) $-\frac{1}{4}$	b) $\frac{1}{5}$	
	c) $\frac{1}{6}$	d) $-\frac{1}{3}$	
7.	In a sphere of radius r, a right circular cone of height	-	scribed. The [1]
	expression for the square of curved surface of cone is		
	a) $2\pi^2 rh(2rh + h^2)$	b) $2\pi^2 r^2 (2rh - h^2)$	
	c) π^2 hr(2rh + h ²)	d) $2\pi^2 r(2rh^2 - h^3)$	
8.	Let $f(x)$ be a function such that $f'(a) \neq 0$. Then at $x =$	a, f(x)	[1]
	a) cannot have a maximum	b) cannot have a minimum	
	c) must have neither a maximum nor a	d) none of these	
O	minimum $f(x) = -\frac{x}{1 + 1}$ is increasing in		[1]
9.	$f(x) = \frac{x}{(x^2+1)}$ is increasing in		[1]

	a) (-1, 0)	b) $(-1,\infty)$	
	c) $(-\infty,-1)\cup(1,\infty)$	d) (-1, 1)	
10.	Every invertible function is		[1]
	a) not necessarily monotonic function	b) identity function	
	c) constant function	d) monotonic function	
11.	If the function f (x) = 2 tan x + (2a + 1) $\log_{e} \sec x $ +	(a - 2) x is increasing on R, then	[1]
	a) $a = \frac{1}{2}$	b) $a\in R$	
	c) $a\in(rac{1}{2},\infty)$	d) $a \in (-\frac{1}{2}, \frac{1}{2})$	
12.	The values of x for which $y = [x(x - 2)]^2$ is an increas	ing function, are	[1]
	a) $0 < x < 2$ and $x > 3$	b) $0 < x < \frac{3}{2}$ and $x > 4$	
	c) $0 < x < 1$ and $x > 2$	d) $0 < x < \frac{1}{2}$ and $x > \frac{3}{2}$	
13.		ven by $P(x) = 0.4x^2 + 2x - 10$, then the marginal cost if no.	[1]
	of units produced is 10 is		
	a) ₹ 8	b) ₹ 10	
	c) ₹ 7	d) ₹ 2	
14.	$f(x) = 1 + 2 \sin x + 3 \cos^2 x, 0 \le x \le \frac{2\pi}{3}$ is		[1]
	a) Minimum at $x = \frac{\pi}{2}$	b) Maximum at $\sin^{-1}(\frac{1}{6})$	
	c) Minimum at x = $\frac{\pi}{6}$	d) Maximum at x = sin ⁻¹ ($\frac{1}{\sqrt{3}}$)	
15.	The function $f(x) = \frac{-x}{2} + \sin x$ defined on $\left[\frac{-n}{3}, \frac{71}{3}\right]$ is	5	[1]
	a) Falls	b) decreasing	
	c) increasing	d) constant	
16.	The function $f(x) = x $ has		[1]
	a) only one maxima	b) only one minima	
	c) no maxima or minima	d) only two maxima	
17.	The rate of change of area of square is 40 cm ² /s. What	t will be the rate of change of side if the side is 5 cm.	[1]
	a) 8 cm/s	b) 2 cm/s	
	c) 4 cm/s	d) 6 cm/s	
18.	The critical points for the function $f(x) = x^3 - 2x^2 + x$	+ 1 are	[1]
	a) 1, 0	b) 4, 3	
	c) 2, 1	d) $1, \frac{1}{3}$	
19.	If a > b > 0, the minimum value of a sec θ - b tan θ is		[1]
	a) $2\sqrt{a^2-b^2}$ c) $\sqrt{a^2-b^2}$	b) $\sqrt{a^2+b^2}$	
	c) $\sqrt{a^2-b^2}$	d) b - a	
			[1]

The function $f(x) = 4 - 3x + 3x^2 - x^3$ is decreasing 20. a) Strictly decreasing on R b) Strictly increasing on R c) Decreasing on R d) Increasing on R Let $\phi(x) = f(x) + f(2a - x)$ and f(x) > 0 for all $x \in [0, a]$ then $\phi(x)$ [1] 21. a) decreases on [0, a] b) increases on [- a, 0] c) increases on [0, a] d) decreases on [a, 2a] If $f(x) = \frac{x}{\sin x}$ and $g(x) = \frac{x}{\tan x}$, where $0 < x \le 1$, then in the interval 22. [1] a) f(x) is an increasing function b) both f(x) and g(x) are increasing functions c) both f(x) and g(x) are decreasing functions d) g(x) is an increasing function 23. Let f(x) = x|x|, then f(x) has [1] b) point of inflexion at x a) point of inflexion at x = 0c) local minima at x = 0d) local maxima at x = The function $f(x) = \frac{5}{x} - 9$ is of which nature for $x \in R$, $(x \neq 0)$. 24. [1] a) strictly decreasing b) increasing c) strictly increasing d) decreasing If $\theta + \phi = \frac{\pi}{3}$ then $\sin \theta \sin \phi$ has a maximum value of θ is 25. [1] a) $\frac{\pi}{4}$ b) π c) $\frac{\pi}{6}$ The maximum value of slope of the curve y [1] + 3x² + 12x - 5 is: 26. a) 9 b) 15 c) 0 d) 12 The function f(x) =27. is increasing, if, [1] a) $\lambda > 1$ b) $\lambda > 2$ c) $\lambda < 2$ d) $\lambda < 1$ Let $f(x) = (x - a)^2 + (x - b)^2 + (x - c)^2$. Then f(x) has a minimum at x =[1] 28. a) $\frac{a+b+c}{3}$ b) $3\sqrt{abc}$ d) $\frac{3}{\frac{1}{a} + \frac{1}{a} + \frac{1}{a}}$ c) $6\sqrt{abc}$ 29. The values of a for which the function $f(x) = \sin x - ax + b$ increases on R are [1] a) $(-\infty,\infty)$ b) [1, 1] c) (-∞, -1) d) [-1, 1] [1] 30. When x is positive, the minimum value of x^{x} is a) $e^{\frac{-1}{e}}$ b) $e^{\frac{1}{e}}$ c) $\frac{1}{e}$ d) ee

31.	Find the intervals in which $f(x) = -x^2 - 2x + 15$ is in	creasing or decreasing	[1]
	a) Decreasing(- ∞ , -4)	b) Increasing (∞ , -2)	
	Increasing (-4, ∞)	Decreasing (0, ∞)	
	c) Increasing (- ∞ , -1)	d) Increasing (- ∞ , -4)	
	Decreasing (-1, ∞)	Decreasing (-4, ∞)	
32.	Let x, y be two variables and $x > 0$, $xy = 1$ then mini	imum value of x + y is	[1]
	a) 2	b) $2\frac{1}{2}$	
	c) $3\frac{1}{3}$	d) 1	
33.	Find the angle of intersection of the two curves x^2y	= 2 and $xy^2 = 4$	[1]
	a) tan ⁻¹ 3	b) $\tan^{1} \frac{3}{5}$	
	c) $\tan^{-1} \frac{5}{3}$	d) $\tan^{-1}\frac{3}{5}$	
34.	$f(x) = (x + 1)^3 (x - 3)^3$ is increasing in		[1]
	a) $(1,\infty)$	b) (-1, 3)	
	c) $(-\infty,1)$	d) $(3,\infty)$	
35.	Which of the following is true for the function $f(x) =$	= 9x - 5?	[1]
	a) f(x) is strictly increasing on R	b) f(x) is decreasing on R	
	c) Both f(x) increasing on R and f(x)decreasing on R are false	d) f(x) is strictly decreasing on R	
36.	The edge of a cube is increasing at a rate of 7 cm/s.	Find the rate of change of area of the cube when $a = 3$ cm.	[1]
	a) 498 cm ² /s	b) _{287 cm²/s}	
	c) 252 cm ² /s	d) 504 cm ² /s	
37.	$f(x) = \sin x \sqrt{3} \cos x$ is maximum when x =		[1]
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{4}$	
	c) 0	d) $\frac{\pi}{3}$	
38.	If $f(x) = 4x^2 + 2x + 1$, then its maximum value is		[1]
	a) 1	b) $\frac{4}{3}$	
	c) $\frac{3}{4}$	d) $\frac{2}{3}$	
39.	The sum of two non-zero numbers is 8, the minimum	0	[1]
	a) $\frac{1}{2}$	b) $\frac{1}{8}$	
	c) $\frac{1}{4}$	d) $\frac{1}{6}$	
40	-	v	[1]
40.	$f(x) = 2x - \tan^{-1} x - \log \{x + \sqrt{x^2 + 1}\}$ is monoton		r_1
	a) $\mathbf{x} \in \mathbf{R}$	b) $x > 0$	
44	c) $x \in \mathbb{R}$ - (0)	d) x < 0	543
41.	If $f(x) = x + \frac{1}{x}$, $x > 0$, then its greatest value is		[1]

	a) -2	b) none of these	
	c) 0	d) 3	
42.	The function $f(x) = \tan x - x$		[1]
	a) never increases	b) sometimes increases and sometimes decreases	
	c) always increases	d) always decreases	
43.	$f(x) = x^x$ has a stationary point at		[1]
	a) x = 1	b) $x = \sqrt{e}$	
	c) x = e	d) $x = \frac{1}{e}$	
44.	The function $f(x) = x^3 - 6x^2 + 9x + 3$ is decreasing for	r	[1]
	a) -1 < x < -3	b) x > 1	
	c) x < 1	d) x < 1 or x > 3	
45.	Interval(s) in which the function $f(x) = \sin x + \cos x$,	$x\in \left(0,rac{\pi}{2} ight)$ is strictly increasing	[1]
	a) $(0, \frac{\pi}{4})$	b) $(\pi, \frac{\pi}{2})$	
	$C)\left(\frac{\pi}{4},\frac{\pi}{2}\right)$	d) $(0, \frac{\pi}{2})$	
46.	The least and greatest values of $f(x) = x^3 - 6x^2 + 9x$ is	n [0, 6], are	[1]
	a) none of these	b) 0,6	
	c) 3,6	d) 0,3	
47.	It is given that for the function f given by $f(x) = x^3 +$	$bx^2 + ax, x \in [1, 3]$, then	[1]
	a) a = -6, b = -11	b) a = - 6, b = 11	
	c) a = 11, b = -6	d) a = 6, b = 11	
48.	The number of values of x where the function $f(x) =$	$\cos x + \cos(\sqrt{2}x)$ attains its maximum is	[1]
	a) 2	b) infinite	
	c) 1	d) 0	
49.	a log x +bx ² + x has its extreme values at $x = -1$ and $x = 2$, then		[1]
	a) a = 2, b = $-\frac{1}{2}$	b) a = 2, b = – 1	
	a) $a = 2, b = -\frac{1}{2}$ c) $a = -2, b = -\frac{1}{2}$	d) $a = -2, b = \frac{1}{2}$	
50.	The function $f(x) = x^x$ decreases on the interval		[1]
	a) (0, e)	b) (0, 1)	
	c) (1/e,e)	d) (0, $\frac{1}{e}$)	
51.	The function $f(x) = 2x^3 - 15x^2 + 36x + 6$ is increasing	g in the interval	[1]
	a) (-∞, 2)	b) $(-\infty, 2] \cup [3, \infty)$	
	c) $(-\infty, 2) \cup (3, \infty)$	d) (3, ∞)	
52.	The function $f(x) = \cos x - 2 \lambda x$ is monotonic decreases	ing when	[1]

	a) $\lambda>2$	b) $\lambda < 1/2$	
	c) $\lambda > 1/2$	d) $\lambda < 2$	
53.	Function $f(x) = \log_a x$ is increasing on R , if		[1]
	a) a < 1	b) 0 < a < 1	
	c) a > 1	d) a > 0	
54.	The function $f(x) = x^3 - 3x$ has a		[1]
	a) local minima at x = 1	b) local maxima at x = 1	
	c) point of inflexion at 0	d) point of inflexion at 1	
55.	Let $f(x) = 2x^3 - 3x^2 - 12x + 5$ on [-2, 4]. The relative	maximum occurs at x =	[1]
	a) 2	b) -1	
	c) 4	d) -2	
56.	$f(x) = [x(x - 3)]^2$ is increasing in		[1]
	a) $(-\infty,0)$	b) $\left(0,rac{3}{2} ight)\cup(3,\infty)$	
	c) (1, 3)	d) $(0,\infty)$	
57.	The function f(x) = $\log_e \left(x^3 + \sqrt{x^6 + 1}\right)$ is of the	following types:	[1]
	a) even and increasing	b) odd and decreasing	
	c) even and decreasing	d) odd and increasing	
58.	The minimum value of $f(x) = 3\cos^2 x + 4\sin^2 x + \cos^2 x$	$\frac{x}{2} + \sin\frac{x}{2}$ is	[1]
	a) $4 + \sqrt{2}$	b) $3 + \sqrt{2}$	
	c) 4 - $\sqrt{2}$	d) 4	
59.	$f(x)$ = sin x - kx is decreasing for all $x \in R$, when		[1]
	a) $k \geq 1$	b) k < 1	
	c) k > 1	d) $k \leq 1$	
60.	The total revenue received from the sale of x units of revenue of $x = 20$.	a product is given by: $R(x) = 5x^3 - 4x^2$, find the marginal	[1]
	a) 5860	b) 5840	
	c) 5000	d) 5600	
61.	The function $f(x) = 4 \sin^3 x - 6 \sin^2 x + 12 \sin x + 100$	is strictly	[1]
	a) increasing in $\left(\pi, \frac{3\pi}{2}\right)$	b) decreasing in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$	
	c) decreasing in $\left(\frac{\pi}{2},\pi\right)$	d) decreasing in $\left[0, \frac{\pi}{2}\right]$	
62.	If the function $f(x) = x^3 - 9kx^2 + 27x + 30$ is increasing	ng on R, then	[1]
	a) 0 < k < 1	b) -1 < k < 1	
	c) k < - 1 or k > 1	d) -1 < k < 0	

63.	If the function $f(x) = kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in every interval, then		[1]
	a) k > 3	b) k < 3	
	c) $k\geq 3$	d) $k\leq 3$	
64.	$f(x) = \sin x$ is increasing in		[1]
	a) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$	b) $\left(\pi, \frac{3\pi}{2}\right)$	
	c) $(0,\pi)$	d) $\left(\frac{\pi}{2},\pi\right)$	
65.	The maximum value of $\left(\frac{1}{x}\right)^x$ is:		[1]
	a) $\left(\frac{1}{e}\right)^{\frac{1}{e}}$	b) e^e	
	c) e	d) $e^{1/e}$	
66.	Let $f(x) = x^{25} (1 - x)^{75}$ for all $x \in [0, 1]$, then $f(x)$ a	ssumes its maximum value at	[1]
	a) $\frac{1}{3}$	b) $\frac{1}{2}$	
	c) $\frac{1}{4}$	d) 0	
67.	The function $f(x) = x^2$ is strictly decreasing in the in	terval.	[1]
	a) (1, 4)	b) (0, ∞)	
	c) (-∞, 0)	d) (-1, ∞)	
68.	$f(x) = \csc x \text{ in } (-\pi, 0) \text{ has a maxima at}$		[1]
	a) $x=rac{-\pi}{2}$	b) $x = 0$	
	c) $x = \frac{-\pi}{3}$	d) $x = \frac{-\pi}{4}$	
69.	The maximum and minimum values of the function	$2x^3 - 15x^2 + 36x + 11$ are respectively	[1]
	a) 39, 35	b) 39, 18	
	c) 38, 37	d) 39, 38	
70.	The function $f(x) = 2\log (x - 2) - x^2 + 4x + 1$ increas	es on the interval	[1]
	a) $(1,2)\cup(3,\infty)$ c) $(-\infty,1)\cup(2,3)$	b) (2 ,4)	
	c) $(-\infty,1)\cup(2,3)$	d) (1 , 3)	
71.	The function given $f(x) = e^{2x}$ isA on R. Here, A	refers to	[1]
	a) neither increasing nor decreasing	b) Decreasing	
	c) strictly increasing	d) strictly decreasing	
72.	Maximum value of x + cos x in $\left[0, \frac{\pi}{2}\right]$ is		[1]
	a) $\frac{\pi}{2} + 1$	b) $\frac{\pi}{2} - 1$	
	c) $-1 + \pi$	d) $\frac{\pi}{2}$	
73.	The least value of k for which $f(x) = x^2 + kx + 1$ is in	creasing on (1, 2), is	[1]
	a) -2	b) 2	
	c) 1	d) -1	

74.	A function $f : R \to R$ is defined as $f(x) = x^3 + 1$. Then the function has
-----	---

	a) both maximum and minimum values	b) neither maximum value nor minimum value
	c) no minimum value	d) no maximum value
75.	Function $f(x) = a^x$ is increasing on R, if	
	a) a > 0	b) a < 0
	c) a > 1	d) 0 < a < 1

[1]