

ABHINAV ACADEMY

UDUPI

CET25M8 APPLICATION OF INTEGRALS

Class 12 - Mathematics

Time Allowed: 1 hour and 30 minutes

1.	The area bounded by the curve $y = x^4 - 2x^3 + x^2 + 3x^4$	with x-axis and ordinates corresponding to the minutes of y	[1]
	is		
	a) 1	b) 4	
	c) $\frac{30}{9}$	d) $\frac{91}{30}$	
2.	The area of the region bounded by the curve $y = x^2$ are	nd the line $y = 16$	[1]
	a) $\frac{128}{3}$	b) $\frac{64}{3}$	
	c) $\frac{32}{3}$	d) $\frac{256}{3}$	
3.	The area enclosed by the parabola $y^2 = 2x$ and its tang	gents through the point (-2, 0) is	[1]
	a) 3	b) $\frac{8}{3}$	
	c) 2	d) 4	
4.	If A_n be the area bounded by the curve $y = (\tan x)^n$ are	and the lines $x = 0$, $y = 0$ and $x = \frac{\pi}{4}$, then for $x > 2$	[1]
	a) $A_n - A_{n-2} > \frac{1}{n-1}$	b) $A_n + A_{n-2} \neq \frac{1}{n-1}$	
	c) $A_n + A_{n-2} = \frac{1}{n-1}$	d) $A_n - A_{n-2} < \frac{1}{n-1}$	
5.	If the area bounded by the curve $y^2 = 16 x$ and the lin	e y = mx is $\frac{2}{3}$, then m is equal to	[1]
	a) 3	b) 2	
	c) 4	d) 1	
6.	Let y be the function which passes through (1,2) having	ng slope ($2x + 1$). The area bounded between the curve and	[1]
	the x-axis is		
	a) 4 sq. units	b) 6 sq. units	
	c) $\frac{5}{6}$ sq. units	d) $\frac{1}{6}$ sq. units	
7.	The area bounded by the curves $y = x - 1 $ and $y = 1$ is	s given by	[1]
	a) 1	b) $\frac{1}{2}$	
	c) 2	d) 3	
8.	The area of the region (in square units) bounded by th	the curve $x^2 = 4y$, line $x = 2$ and x-axis is	[1]
	a) $\frac{8}{3}$	b) 1	
	c) $\frac{2}{3}$	d) $\frac{4}{3}$	
			[1]

Maximum Marks: 63

9.	The area formed by x^2 + y^2 - $6x$ - $4y$ + $12 \leq 0$	$y,y\leq x$ and $x\leq rac{5}{2}$ is	
	a) $\frac{\pi}{4} - \frac{\sqrt{3}-1}{8}$	b) $\frac{\pi}{6} = \frac{\sqrt{3}+1}{8}$	
	c) $\frac{\pi}{6} - \frac{\sqrt{3}-1}{8}$	d) $\frac{\pi}{6} + \frac{\sqrt{3}+1}{8}$	
10.	The area bounded by the parabola $y^2 = 8x$, the	x-axis and the latus rectum is	[1]
	a) $\frac{16\sqrt{2}}{3}$	b) $\frac{32}{3}$	
	c) $\frac{16}{3}$	d) $\frac{23}{3}$	
11.	The area of the region bounded by the curves y	y = x - 2 , x = 1, x = 3 and the x – axis is	[1]
	a) 1	b) 4	
	c) 2	d) 3	
12.	Area enclosed between by the curve y^2 (2a - x)	$x = x^3$ and the line x = 2a above x-axis is	[1]
	a) $\frac{3}{2}\pi a^2$	b) πa^2	
	c) $3\pi a^2$	d) $2\pi a^2$	
13.	The area enclosed by the circle $x^2 + y^2 = 2$ is e	equal to	[1]
	a) $4\pi^2$ sq units	b) 4π sq units	
	c) 2π sq units	d) $2\sqrt{2}\pi$ sq units	
14.	The area bounded by the curves $y = \sqrt{x}$, 2y +	-3 = x and the x-axis in the first quadrant is	[1]
	a) 36	b) 18	
	c) 9	d) 20	
15.	The area bounded by the curves $y^2 = 4x$ and y	= x is equal to	[1]
	a) $\frac{8}{3}$	b) $\frac{35}{6}$	
	c) $\frac{39}{6}$	d) $\frac{1}{3}$	
16.	The area bounded by the curve $\sqrt{x} + \sqrt{y} = 1$	and the coordinate axes is	[1]
	a) $\frac{1}{6}$	b) 1	
	c) 2	d) $\frac{1}{2}$	
17.	The area of the region bounded by the circle x^2	$x^{2} + y^{2} = 1$ is	[1]
	a) 2π sq units	b) π sq units	
	c) 3π sq units	d) 4π sq units	
18.	The area of the region bunded by the curves y	= x - 2 , $x = 3$, $x = 1$ and the $x - axis$ is	[1]
	a) 1	b) 2	
	c) 3	d) 4	
19.	If the area cut off from a parabola by any doub that double ordinate and its distance from the v	Ie ordinate is k times the corresponding rectangle contained by vertex, then k is equal to	[1]
	a) $\frac{2}{3}$	b) 3	

c) $\frac{1}{3}$ d) $\frac{3}{2}$

20.	The area bounded by the parabola $y^2 = 4ax$, latus rectum and x-axis is		[1]
	a) 0	b) $\frac{2}{3}a^2$	
	c) $\frac{a^2}{3}$	d) $\frac{4}{3}a^2$	
21.	The area bounded by the curve $y = x (x - 1) (x - 2)$ and the x-axis is equal to		[1]
	a) $\frac{1}{2}$ sq.units	b) 2 sq.units	
	c) 1 sq.units	d) $\frac{1}{4}$ sq.units	
22.	The area bounded by the lines $y = 2 + x$, $y = 2 - x$ a	nd $x = 2$ is	[1]
	a) 16	b) 8	
	c) 3	d) 4	
23.	The area bounded by the ellipse $x^2 + 9y^2 = 9$ and the	e straight line $x + 3y = 3$ is	[1]
	a) $rac{4}{3}(\pi-2)$	b) $\frac{3}{4}(\pi - 2)$	
	c) 6 <i>π</i>	d) 9π	
24.	The area of the region bounded by the curve $x^2 = 4y$	and the straight line $x = 4y - 2$ is	[1]
	a) $\frac{5}{8}$ sq.units	b) $\frac{9}{8}$ sq.units	
	c) $\frac{3}{8}$ sq.units	d) $\frac{7}{8}$ sq.units	
25.	The area bounded by the parabola $x = 4 - y^2$ and y-a	xis, in square units, is	[1]
	a) $\frac{33}{2}$	b) $\frac{3}{32}$	
	c) $\frac{32}{3}$	d) $\frac{16}{3}$	
26.	The area bounded by the curve $y = 2x - x^2$ and the li	ne $x + y = 0$ is	[1]
	a) $\frac{35}{6}$ sq. units	b) $\frac{19}{6}$ sq. units	
	c) $\frac{22}{6}$ sq. units	d) $\frac{9}{2}$ sq. units	
27.	The area of the region bounded by the ellipse $\frac{x^2}{25}$ +	$\frac{y^2}{16} = 1$ is	[1]
	a) $20\pi^2$ sq. units	b) 25π sq. units	
	c) 20π sq. units	d) $16\pi^2$ sq. units	
28.	The area bounded by the parabola $y = x^2$ and the line	e y = x is	[1]
	a) $\frac{1}{2}$ sq. units	b) $\frac{1}{8}$ sq. units	
	c) $\frac{1}{6}$ sq. units	d) $\frac{1}{3}$ sq. units	
29.	The area bounded by the y-axis, $y = \cos x$ and $y = \sin y$	n x when $0 \le x \le \frac{\pi}{2}$ is	[1]
	a) $\sqrt{2}$ sq units	b) $(\sqrt{2}-1)$ sq units	
	c) $(2\sqrt{2}-1)$ sq units	d) $(\sqrt{2}+1)$ sq units	
30.	The area between the hyperbola $xy = c^2$, then x – a	axis and the ordinates at a and b with $a > b$ is :	[1]
	a) $c^2 \log\left(\frac{b}{a}\right)$	b) $c^2 \log(ab)$	
	c) $c^2 \log(a+b)$	d) $c^2 \log\left(\frac{a}{b}\right)$	

31.	The area of the region bounded by the curve y = $\sqrt{1}$	$\overline{6-x^2}$ and x-axis is	[1]
	a) 16π sq units	b) 8π sq units	
	c) 20π sq units	d) 256 π sq units	
32.	The area bounded by the curves $y = \sin x$ between the	e ordinates $x = 0$, $x = \pi$ and the x-axis is	[1]
	a) 2 sq. units	b) 4 sq. units	
	c) 3 sq. units	d) 1 sq. units	
33.	The area of the region bounded by the parabola (y - 2 and the x-axis is	$(2)^2 = x - 1$, the tangent to it at the point with the ordinate 3	[1]
	a) 6	b) 7	
	c) 3	d) None of these	
34.	The area enclosed by the curve $xy^2 = a^2 \left(a - x\right)^2$) and the y – axis is	[1]
	a) <i>π</i>	b) 2π	
	c) πa^2	d) 3π	
35.	Area of the region bounded by the curve $y^2 = 4x$, y-a	tx is and the line $y = 3$ is	[1]
	a) $\frac{9}{4}$	b) $\frac{9}{2}$	
	c) $\frac{9}{3}$	d) 2	
36.	The area of the region bounded by the curve $x = 2y + 2y$	- 3 and the y -axis for $y = 1$ and $y = -1$ is	[1]
	a) $\frac{3}{2}$ sq units	b) 6 sq units	
	c) 8 sq units	d) 4 sq units	
37.	The area bounded by the curves $y = \sqrt{x}, 2y + 3 =$	x and the x- axis in the first quadrant is	[1]
	a) 25	b) 9	
	c) 81	d) 36	
38.	The area of the region bounded by $y = x - 1 $ and $y = x - 1 $	= 1 is	[1]
	a) 2	b) $\frac{1}{2}$	
	c) $\frac{1}{4}$	d) 1	
39.	The area of the smaller segment cut off from the circ	le $x^2 + y^2 = 9$ by x = 1 is	[1]
	a) $\frac{1}{2}(9 \mathrm{sec}^{-1}(3) - \sqrt{x})$	b) $9 \sec^{-1}(3) - \sqrt{8}$	
	c) $9 \mathrm{sec}^{-1}(4) + \sqrt{8}$	d) $\sqrt{8} - 9 { m sec}^{-1}(3)$	
40.	The area of the region bounded by the parabola (y - 2	$(2)^2 = x - 1$, the tangent to the parabola at the point (2,3) and	[1]
	the x-axis is equal to		
	a) 14 sq. units	b) 6 sq. units	
	c) 9 sq. units	d) 12 sq. units	
41.	The area of the region { (x , y) : $x^2 + y^2 \leqslant 1 \leqslant x$	+ y brace is equal to	[1]
	a) $\frac{\pi-2}{4}$ sq. units	b) $\frac{3\pi-2}{4}$ sq. units	

	c) $\frac{1}{4}$ sq. units	d) $\frac{1}{2}$ sq. units	
42.	The area bounded by $y = 2 - x^2$ and $x + y = 0$ is		[1]
	a) $\frac{9}{2}$ sq. units	b) $\frac{7}{2}$ sq. units	
	c) 7 sq. units	d) 9 sq. units	
43.	The area bounded by the parabola $y^2 = 4x$ and the	line $x + y = 3$ is	[1]
	a) $\frac{16}{3}$	b) $\frac{28}{3}$	
	c) $\frac{64}{3}$	d) $\frac{32}{3}$	
44.	The area bounded by the angle bisectors of the line	es $x^2-y^2+2y=1$ and $x+y=3$ is	[1]
	a) 6 sq. units	b) 3 sq.units	
	c) 4 sq. units	d) 2 sq. units	
45.	For which of the following values of m, is the area	a of the region bounded by the curve $y = x - x^2$ and the line $y =$	[1]
	mx equal to $\frac{9}{2}$?		
	a) -4	b) 2	
	c) 0	d) -2	
46.	The area of the circle $x^2 + y^2 = 16$ exterior to the p	parabola $y^2 = 6x$ is	[1]
	a) $\frac{4(4\pi - \sqrt{3})}{3}$	b) $\frac{4(4\pi+\sqrt{3})}{3}$	
	c) $\frac{4(8\pi - \sqrt{3})}{3}$	d) $\frac{4(8\pi + \sqrt{3})}{3}$	
47.	The area enclosed between the curves $y^2 = x$ and	d y = x is	[1]
	a) $\frac{5}{3}$ sq.units	b) $\frac{1}{6}sq.$ units	
	c) $\frac{2}{3}sq.$ units	d) 1 sq. units	
48.	Ratio of the area cut off from a parabola by any do	puble ordinate is that of the corresponding rectangle contained	[1]
	by that double ordinate and its distance from the ve	ertex is	
	a) 1 : 2	b) 2 : 3	
	c) 1 : 3	d) 1 : 1	
49.	Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines $x = 0$ and $x = 2$ is		[1]
	a) π	b) $\frac{\pi}{3}$	
	c) $\frac{\pi}{4}$	d) $\frac{\pi}{2}$	
50.	The positive value of the parameter a for which the	e area of the figure bounded by $y = \sin ax$, $y = 0$, $x = \frac{\pi}{a}$ and	[1]
	$x = rac{\pi}{3a}$ is 3 is equal to		
	a) $\frac{1}{2}$	b) $\frac{2+\sqrt{3}}{3}$	
	c) 2	d) 3	
51.	Area of the region bounded by the curve $y = \cos x$	between $x = 0$ and $x = \pi$ is	[1]
	a) 2 sq units	b) 3 sq units	
	c) 4 sq units	d) 1 sq units	

52.	The area bounded by the curve $y = f(x)$, x-axis, and the ordinates $x = l$ and $x - b$ is $(b - 1) \sin (3b + 4)$. Then, f (x) is		[1]
	a) sin (3x + 4)	b) sin (3x + 4) + 3 (x - 1) cos (3x + 4)	
	c) sin (3x + 5)	d) $(x - 1) \cos(3x + 4)$	
53.	Area bounded by the curve $y = x^3$, the x-	axis and the ordinates $x = -2$ and $x = 1$ is	[1]
	a) 2	b) $\frac{17}{4}$	
	c) 3	d) 6	
54.	The area bounded by $y = sinx $, the $x - a$	axis and the line $ x =\pi$ is	[1]
	a) 8 sq. units	b) 4 sq. units	
	c) 6 sq. units	d) 2 sq. units	
55.	Area of the region in the first quadrant en	nclosed by the x-axis, the line $y = x$ and the circle $x^2 + y^2 = 32$ is	[1]
	a) 32π sq units	b) 4π sq units	
	c) 16π sq units	d) 24 sq units	
56.	The area of the smaller portion of the cir	cle $x^2 + y^2 = 4$ cut off by the line $x = 1$ is	[1]
	a) $\frac{4\pi-\sqrt{3}}{3}$	b) $\frac{4\pi - 3\sqrt{3}}{3}$	
	c) $\frac{4\pi+\sqrt{3}}{3}$	d) $\frac{4\pi + 3\sqrt{3}}{3}$	
57.	The area of the region bounded by the cu	arve $y = \sin x$ between the ordinates $x = 0$, $x = \frac{\pi}{2}$ and the x-axis is	[1]
	a) 2 sq units	b) 4 sq units	
	c) 1 sq units	d) 3 sq units	
58.	The area enclosed by the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}$	$\frac{1}{2} = 1$ is equal to	[1]
	a) π^2 ab	b) <i>πab</i>	
	c) πab^2	d) $\pi a^2 b$	
59.	If the area above the x-axis, bounded by	the curves $y = 2^{kx}$ and $x = 0$, and $x = 2$ is $\frac{3}{\log_e 2}$ then the value of k is	[1]
	a) 1	b) -1	
	c) 2	d) $\frac{1}{2}$	
60.	The area bounded by the curve $y = x^2 + 1$ and the line $x + y = 3$ is		[1]
	a) $\frac{16}{3}$	b) $\frac{9}{2}$	
	C) $\frac{35}{3}$	d) $\frac{32}{3}$	
61.	The area between x-axis and curve, $y = c$	cos x when $0 \leq x \leq 2\pi$ is	[1]
	a) 3	b) 4	
	c) 0	d) 2	
62.	The area enclosed between the curves y	= $\sqrt{x^-}, \; x=2y+3$ and the x-axis is	[1]
	a) 36	b) 9	

b) $\frac{2}{3}$

- c) $\frac{1}{2}$ d) 1