

ABHINAV ACADEMY

UDUPI

CET25P11 DUAL NATURE OF RADIATION AND MATTER

Class 12 - Physics

Time Allowed: 1 hour and 30 minutes

Maximum Marks: 75

- 1. When photons of energy, $h\nu$ fall on an aluminum plate (of work function E_0), photoelectrons of maximum [1] kinetic energy K are ejected. If the frequency of radiation is doubled, the maximum kinetic energy of the ejected photoelectrons will be
 - a) 2K b) K
 - c) K + E₀ d) K + $h\nu$
- A photon of wavelength 663 nm is incident on a metal surface. The work function of the metal is 1.50 eV. The [1] maximum kinetic energy of the emitted photo electrons is

a) $3.0 \times 10^{-20} \text{J}$	b) 4.5 $ imes$ 10 ⁻²⁰ J
c) 9.0 \times 10 ⁻²⁰ J	d) $6.0 \times 10^{-20} \text{J}$

- 3. Electrons used in an electron microscope are accelerated by a voltage of 25 kV. If the voltage is increased to 100 **[1]** kV, then the de-Broglie wavelength associated with the electrons would
 - a) increase by 4 times b) decrease by 2 times
 - c) increase by 2 times d) decrease by 4 times
- The photoelectrons emitted from a given cathode on the incidence of a given monochromatic beam of light have [1] a/an
 - a) energy spread with an upper limit b) energy spread with a lower limit
 - c) definite energy only d) energy spread with no sharp limits
- 5. At stopping potential, the kinetic energy of emitted photoelectron is
 - a) minimum b) zero
 - c) cannot de predicted d) maximum
- Light of wavelength 500 nm is incident on metal with work function 2.28 eV. The de-Broglie wavelength of the [1] emitted electron is
 - a) $< 2.8 \times 10^{-9}$ m b) $< 2.8 \times 10^{-10}$ m c) $> 2.8 \times 10^{-9}$ m d) $< 2.8 \times 10^{-12}$ m

7. Light of frequency $1.5 v_0$ is incident on a photosensitive material of threshold frequency v_0 . If the frequency of **[1]** the incident radiation is kept constant and intensity is increased, the photo current will:

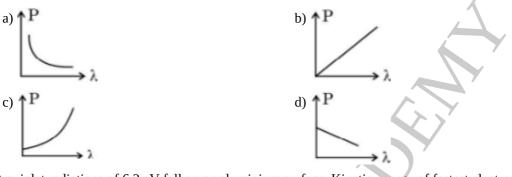
a) decrease	b) first decrease and then become zero
c) increase	d) not change

[1]

8.	The ratio of de-Broglie wavelength associated with two electrons accelerated through 25 V and 36 V is [[1]
	a) $\frac{5}{6}$	b) $\frac{36}{25}$	
	c) $\frac{6}{5}$	d) $\frac{25}{36}$	
9.	Photons of energy 4.3 eV are incident on a photosensi potential for photoelectrons is:	itive surface of work function $2 \cdot 3$ eV. The stopping	[1]
	a) 2.3 eV	b) 4.3 eV	
	c) 2.0 eV	d) 6.6 eV	
10.	What is the energy of a photon whose wavelength is 6840 $\stackrel{ m o}{ m A}$?		[1]
	a) 3.6 eV	b) 12.1 eV	
	c) -13.6 eV	d) 1.81 eV	
11.	What will be the number of photons emitted per second	nd by a 10 W sodium vapour lamp assuming that 90% of	[1]
	the consumed energy is converted into light? [Wavele	ngth of sodium light is 590 nm, and h = 6.63 $ imes$ 10 ⁻³⁴ Js]	
	a) 0.267 $ imes$ 10 ¹⁸	b) 0.267×10^{19}	
	c) 0.267×10^{17}	b) 0.267×10^{19} d) 0.267×10^{20}	
12.	If an electron and a photon propagate in the form of w	vaves having the same wavelength, it implies that they have	[1]
	the same:		
	a) energy	b) velocity	
	c) momentum	d) angular momentum	
13.	Work function of tungsten and sodium are 4.4 eV and	2.3 eV respectively. If threshold wavelength of sodium is	[1]
	$5460\overset{0}{A}$, then threshold wavelength of tungsten is		
	a) $6000 \overset{0}{A}$	b) $_{11360}\overset{0}{A}$	
	c) 8000 Å	d) $_{2854} \overset{0}{A}$	
14.	A 200 W sodium street lamp emits yellow light of wa	velength 0.6 μ m. Assuming it to be 25% efficient in	[1]
	converting electrical energy to light, the number of ph	notons of yellow light it emits per second is	
	a) 6×10^{18}	b) $_{3 \times 10^{19}}$	
	c) 62×10^{20}	d) 1.5×10^{20}	
15.	If de-Broglie wavelength of an alpha particle and a pr	oton are equal, then the ratio of their momentum is	[1]
	a) 1:4	b) 1 : 2	
	c) 1 : 1	d) 2 : 1	
16.	The maximum kinetic energy of the photoelectrons va	aries:	[1]
	1. inversely with the intensity and is independent of	the frequency of the incident radiation	
	2. inversely with the frequency and is independent of		
	3. linearly with the frequency and the intensity of the	e incident radiation	

4. linearly with the frequency and is independent of the intensity of the incident radiation

c) Option ii


17.

21.

Photons of frequency v are incident on the surfaces of two metals A and B of threshold frequencies $\frac{3}{4}$ v and $\frac{2}{3}$ v, [1] respectively. The ratio of maximum kinetic energy of electrons emitted from A to that from B is

d) Option i

- a) 3 : 2 c) 3 : 4 d) 4 : 3
- 18. Which of the following figures represents the variation of a particle's momentum with the de Broglie wavelength **[1]** associated with it?

19. Ultraviolet radiations of 6.2 eV fall on an aluminium surface. Kinetic energy of fastest electrons emitted is (work [1] function = 4.2 eV)

a)
$$9 \times 10^{-32}$$
 J
b) 7×10^{-25} J
c) 3.2×10^{-21} J
d) 3.2×10^{-19} J

20. If the energy of a photon corresponding to a wave length of 6000 $\overset{0}{A}$ is 3.32×10^{19} joule, the photon energy for a wavelength of 4000 $\overset{0}{A}$ will be

a) 6.98×10^{19} joules c) 4.98×10^{19} joules The value of Planck's energy is a) $nhc\lambda$ c) $nh\lambda$ A photosensitive metallic surface has work function, $h\nu_0$. If photons of energy $2h\nu_0$ fall on this surface, the [1]

22. A photosensitive metallic surface has work function, $h\nu_0$. If photons of energy $2h\nu_0$ fall on this surface, the electrons come out with a maximum velocity of 4×10^6 m/s. When the photon energy is increased to $5h\nu_0$, then maximum velocity of photoelectrons will be

- a) 8×10^{6} m/s b) 2×10^{6} m/s c) 8×10^{5} m/s d) 2×10^{7} m/s
- 23. Proton and *α*-particle have the same de Broglie wavelength. What is the same for both of them? [1]
 a) Energy
 b) Momentum
 c) Time period
 d) Frequency
- 24. Threshold wavelength of a photoelectric emission from a material is 600 nm. Which of the following [1] illuminating source will emit photoelectrons?

	a) 100 W, ultraviolet lamp	b) Both 10 W, ultraviolet lamp and 100 W, ultraviolet lamp	
	c) 400 W, infrared lamp	d) 10 W, ultraviolet lamp	
25.	The de Broglie wave corresponding to a particle of ma	ass m and velocity v has a wavelength associated with it	[1]
	a) $\frac{mh}{v}$	b) $\frac{m}{hv}$	
	c) <i>hmv</i>	d) $\frac{h}{mv}$	
26.	The work function of a photoelectric material is 3.32	eV. The threshold frequency will be equal to	[1]
	a) 6 $ imes 10^{14}$ Hz	b) 7×10^{14} Hz	
	c) 8 $ imes 10^{14}$ Hz	d) 9 $\times 10^{14}$ Hz	
27.	Threshold frequency of a photon required to eject a pl	notoelectron from the surface of cesium is (work function	[1]
	of cesium is 2.1 eV)		
	a) 4.04 $ imes 10^{14}\mathrm{Hz}$	b) $4.56 \times 10^{14} \text{Hz}$	
	c) 5.06 $ imes 10^{14}$ Hz	d) 6.64 $ imes 10^{14}$ Hz	
28.	Light of wavelength 4000 $\stackrel{0}{A}$ is incident on a metal pla	te whose work function is 2 eV. The maximum kinetic	[1]
	energy of the emitted photoelectrons would be		
	a) 1.5eV	b) 2.0eV	
	c) 0.5eV	d) 1.1eV	
29.	If the threshold wavelength of radiations required to e	ject a photoelectron from a metal surface is 6 $ imes 10^{-7}$ m,	[1]
	then work function of the metal is	Y	
	a) 4.4×10^{-15} J	b) 5.5 $ imes 10^{-21}$ J	
	c) 3.3×10^{-19} J	d) 6.6 $\times 10^{-9}$ J	
30.		rons from a metal surface of work function 2.5 eV, is 1.7	[1]
	eV. If wavelength of incident radiation is halved, then		
	a) 6.7 V	b) 1.1 V	
	c) 5 V	d) 2.5 V	
31.	A photo-cell is illuminated by a source of light, which becomes $\frac{d}{2}$, then the number of electrons emitted per	-	[1]
	2		
	a) two times	b) four times	
22	c) same	d) one-fourth	[4]
32.		romatic light of wavelength, λ . The stopping potential for surface is illuminated with light of wavelength 2λ , the	[1]
	stopping potential is V_0 . The threshold wavelength fo		
		-	
	a) 4λ	b) $\frac{\lambda}{6}$	
	c) 6λ	d) $\frac{\lambda}{4}$ o	[1]
33.		hat minimum wavelength of emitted X-rays may be 1 ${ m A}$ (h	[1]
	$= 6.6 \times 10^{-34} \text{ Js})?$		

AA

	a) 12.84 kV	b) 11.98 kV	
	c) 12.42 kV	d) 10.78 kV	
34.	Which of the following metals thermionically emits a them?	n electron at the relatively lowest temperature among	[1]
	a) Molybdenum	b) Copper	
	c) Aluminium	d) Platinum	
35.	In an experiment of photoelectric emission for incider	nt light of 4000 $\stackrel{0}{A}$, the stopping potential is 2V. If the	[1]
	wavelength of incident light is made 3000 $\stackrel{0}{A}$, then sto	pping potential will be	
	a) 2 Volt	b) less than 2 volt	
	c) more than 2 volt	d) zero	
36.	A photocell is illuminated by a small bright source pla	aced 1 m away. When the same source of light is placed 0.5	[1]
	m away, the number of electrons emitted by photocath	node would	
	a) decrease by a factor of 4	b) decrease by a factor of 2	
	c) increase by a factor of 2	d) increase by a factor of 4	
37.	If an electron accelerated through a potential difference	ce of 500 volt attains a speed of $1.33 imes 10^7 { m ms}^{-1}$, then	[1]
	specific charge of the electron should be		
	a) $1.76 imes 10^{11} { m Ckg^{-1}}$	b) $1.66 \times 10^{11} \mathrm{Ckg}^{-1}$	
	c) 1.86 $ imes 10^{11} { m Ckg^{-1}}$	d) $1.96 imes 10^{11} { m Ckg^{-1}}$	
38.	The kinetic energy of an electron, which is accelerated	d in the potential difference of 100 volts, is	[1]
	a) 6.636 cal	b) $1.602 \times 10^{-17} \text{J}$	
	c) 416.6 cal	d) $1.6 \times 10^4 \mathrm{J}$	
39.	Maximum velocity of photoelectrons emitted from a r	netal surface having work function 4 eV is (given:	[1]
	frequency of incident radiations is 10 ¹⁵ Hz)		
	a) $2.25 \times 10^5 { m ms}^{-1}$	b) $3.25 \times 10^8 \text{ms}^{-1}$	
	c) $6 \times 10^5 \text{ms}^{-1}$	d) $4 \times 10^8 \text{ms}^{-1}$	
40.	An electron of mass m and charge e is accelerated fro	m rest through a potential difference V in vacuum. Its final	[1]
	velocity will be		
	a) $\frac{\text{eV}}{2 \text{ m}}$	b) $\sqrt{\frac{eV}{m}}$	
	c) $\sqrt{\frac{2eV}{m}}$	d) $\frac{eV}{m}$	
41.	The work functions for metals A, B and C are respect	ively 1.92 eV, 2.0 eV and 5 eV. According to Einstein's	[1]
	equation, the metals which will emit photoelectrons for	or radiation of wavelength 4100 ${ m \mathring{A}}^{ m o}$ is/are	
	a) A and B only	b) all the three metals	
	c) B only	d) A only	
42.	Photoelectrons are emitted by a metal surface only whether the surface only whether the surface only whether the surface of th	nen	[1]

	a) light is incident at an angle greater than the critical angle	b) the wavelength of the incident light exceeds a certain minimum value	
	c) frequency of the incident light exceeds a certain minimum value	d) metal is initially charged	
43.	In photoelectric emission process from a metal of wor electrons is 0.5 eV. The corresponding stopping poter	rk function 1.8 eV, the kinetic energy of most energetic tial is	[1]
	a) 2.3 V	b) 0.5 V	
	c) 1.3 V	d) 1.8 V	
44.	In a photoelectric cell, the photoelectric current deper	nds on the	[1]
	a) wavelength of light	b) potential difference applied	
	c) intensity of light	d) frequency of light	
45.	1	-off frequency is $ u$. If radiation of frequency $2 u$ impinges	[1]
	on the metal plate, the maximum possible velocity of	the emitted electron will be (m is the electron mass)	
	a) $2\sqrt{rac{h u}{m}}$	b) $\sqrt{\frac{h\nu}{(2m)}}$	
	C) $\sqrt{\frac{h\nu}{m}}$	d) $\sqrt{\frac{2h\nu}{m}}$	
46.	In an experiment on photoelectric effect, the intensity	of incident radiation is increased, keeping the frequency \mathbf{v}	[1]
	the same. The number of photoelectrons emitted will:		
	a) increase	b) remain same	
	c) decrease	d) depend on frequency	
47.	In a photo-emissive cell, with an exciting wavelength		[1]
	wavelength is changed to $\frac{3\lambda}{4}$, the speed of the fastest	emitted electron will be:	
	a) $v(\frac{3}{4})^{1/2}$	b) greater than $v(\frac{4}{3})^{1/2}$	
	c) $v(\frac{4}{3})^{1/2}$	d) less than $v(\frac{4}{3})^{1/2}$	
48.	The work function of a substance is 4 eV. The longest	t wavelength of light that can cause photoelectron emission	[1]
	from this substance is approximately:		
	a) 540 nm	b) 220 nm	
	c) 400 nm	d) 310 nm	
49.	The work-function for a metal is 3 eV. To emit a phot	oelectron of energy 2 eV from the surface of this metal, the	[1]
	wavelength of the incident light should be:		
	a) ₂₈₇₅ ^o A	b) $_{6187}\overset{o}{A}$	
	c) ₁₂₃₇₅ ^o A	d) $_{4125} \overset{o}{A}$	
50.	If photons of frequency $ u$ are incident on the surfaces	of metals. A & B of threshold frequencies $\frac{v}{2}$ and $\frac{v}{3}$	[1]
	respectively, the ratio of the maximum kinetic energy	of electrons emitted from A to that from B is	
	a) $\sqrt{3}:\sqrt{2}$	b) 1:3	

c) 3 : 4 d) 2 : 3

51.	Photoelectrons emitted from a metal have		[1]
	a) different speeds starting from 0 to certain maximum.	b) Both same kinetic energy and same frequency	
	c) same kinetic energy.	d) same frequency.	
52.		in a photoelectric cell. The maximum energy of emitted are incident on C, no photoelectrons will reach anode A. If	[1]
	a) -3 V	b) -1 V	
	c) +4 V	d) +3 V	
53.	Light of frequency 6.4×10^{14} Hz is incident on a me of the emitted electrons is about:	tal of work function 2.14 eV. The maximum kinetic energy	[1]
	a) 1.02 eV	b) 0.51 eV	
	c) 0.10 eV	d) 0.25 eV	
54.	A photoelectric surface is illuminated successively by	monochromatic light of wavelength λ and $rac{\lambda}{2}$. If the	[1]
		is in the second case is 3 times that in the first case, the	
	work function of the surface of the material (h = Plan		
	a) $\frac{2hc}{\lambda}$	b) $\frac{hc}{2\lambda}$	
	c) $\frac{hc}{\lambda}$	d) $\frac{he}{3\lambda}$	
55.	When ultraviolet rays incident on metal plate then pho-	ptoelectric effect does not occur. It occurs by incidence of	[1]
	a) X-rays	b) Light waves	
	c) Radio waves	d) Infrared rays	
56.	If we consider electrons and photons of same waveler	ngth, then they will have same	[1]
	a) velocity	b) momentum	
	c) angular momentum	d) energy	
57.	A photoelectric cell is illuminated by a point source of potential V. Then:	f light 1 m away. The plate emits electrons having stopping	[1]
	a) V decreases as distance increase.	b) V increases as distance increase.	
	c) V becomes zero when distance increases or decreases.	d) V is independent of distance (r).	
58.	The graph showing the correct variation of linear mor wavelength (λ) is-	nentum (p) of a charge particle with its de-Broglie	[1]
	a) $p \uparrow \qquad $	b) $p \rightarrow \lambda$	
	C)	d)	

d)

c)

59. A particle of mass 1 mg has the same wavelength as an electron moving with a velocity of $3 \times 10^8 \text{ ms}^{-1}$. The **[1]** velocity of the particle is (mass of electron = 9.1×10^{-3} kg)

a) $9 \times 10^{-2} \text{ ms}^{-1}$ b) $2.7 \times 10^{-18} \text{ ms}^{-1}$

c)
$$3 \times 10^{-31} \text{ ms}^{-1}$$
 d) $2.7 \times 10^{-21} \text{ ms}^{-1}$

60. Which one of the following metals does not exhibit emission of electrons from its surface when irradiated by [1] visible light?

a) Rubidium	b) Caesium
c) Sodium	d) Cadmium

61. The photoelectric work function for a metal surface is 4.125 eV. The cut-off wavelength for this surface is [1]

a) $_{6000}$ Å c) $_{3000}$ Å d) $_{2062.5}$ Å

62. An electron beam has a kinetic energy equal to 100 eV. Find its wavelength associated with a beam, if mass of **[1]** electron = 9.1×10^{-31} kg and $1 \text{eV} = 1.6 \times 10^{-19}$ J/eV.

```
(Planck's constant = 6.6 \times 10^{-34} Js)
```

^{a)}
$$_{0.12}$$
 Å ^{b)} $_{6.3}$ Å ^{d)} $_{24.6}$ Å

- 63. The maximum velocity of the photoelectron emitted by a metal is 1.8×10^6 ms⁻¹. Take the value of the specific **[1]** charge of the electron is 1.8×10^{11} C kg⁻¹. Then the stopping potential in volt is:
 - a) 6 b) 1
 - c) 9 d) 3
- 64. A light of frequency v is incident on a metal surface whose work function is W₀. The kinetic energy of emitted [1] electron is K. If the frequency of the incident light is doubled then the kinetic energy of emitted electron will be
 - a) less than Kb) between K and 2Kc) 2Kd) more than 2K

65. If light of wavelength 4000 Å is incident on a sodium surface for which the threshold wavelength of [1] photoelectrons is 5420 Å, then work-function of sodium is

- a) 4.58 eV b) 0.57 eV c) 1.14 eV d) 2.29 eV
- 66. Greenlight causes the emission of photoelectron from a surface, but not the yellow light. Emission of [1] photoelectron will occur if the surface is illuminated by

a) microwave	b) infrared rays
--------------	------------------

c) ultraviolet rays d) red rays 67. The work function of a metal is 4eV. To emit photo electrons with zero velocity from this, the wavelength of [1] incident radiation must be a) $1700 \stackrel{o}{A}$ b) 2700Å c) $3100 \mathring{A}$ d) 5900Å 68. The dual nature of light is exhibited by [1] a) refraction and interference b) photoelectric effect c) diffraction and reflection d) diffraction and photoelectric effect 69. E, c and v represent the energy, velocity and frequency of a photon. Which of the following represents its [1] wavelength? a) $\frac{hc}{E}$ b) $\frac{hv}{c^2}$ c) $\frac{hv}{c}$ d) hv 70. The value of Planck's constant is [1] b) 6.63×10^{-34} kg-m a) $6.63 \times 10^{-34} \text{ kg-m}^2/\text{sec}$ d) $6.63 imes 10^{-34}$ J/sec c) 6.63×10^{-34} J-sec 71. The cathode of a photoelectric cell is changed such that the work function changes from W_1 to W_2 ($W_2 > W_1$). [1] If the currents before and after changes are I₁ and I₂, all other conditions remaining unchanged, then (assuming $h\nu > W_2$), b) $I_1 < I_2$ a) $I_1 = I_2$ c) $I_1 < I_2 < 2I_1$ d) $I_1 > I_2$ 72. When photon of energy 4.0 eV strikes the surface of a metal A, the ejected photoelectrons have maximum [1] kinetic energy T_A eV and de-Broglie wavelength λ_A . The maximum kinetic energy of photoelectrons liberated from another metal B by photon of energy 4.50 eV is $T_B = (T_A - 1.5)eV$. If the de-Broglie wavelength of these photoelectrons $\lambda_B = 2\lambda_A$, then the work function of metal B is: a) 3eV b) 2eV c) 1.5eV d) 4eV 73. For Bragg's diffraction by a crystal to occur, then the X-ray of wavelength λ and interatomic distance d must be [1] such that b) λ is smaller than 2d a) λ is greater than 2d c) λ is smaller than or equal to 2d d) λ equals 2d

74. The maximum kinetic energy of photoelectrons emitted from a surface when photons of energy 6 eV fall on it is [1]4 eV. The stopping potential is

a) 2 V	b) 10 V
c) 4 V	d) 6 V

75. The curve drawn between velocity and frequency of a photon in vacuum will be a

[1]

- a) straight line passing through origin and making an angle of 45° with frequency axis
- c) hyperbola

b) straight line parallel to frequency axis

d) straight line parallel to velocity axis