

ABHINAV ACADEMY

UDUPI

CET25P13 NUCLEI

Class 12 - Physics

Time Allowed: 1 hour and 30 minutes

Maximum Marks: 75

1]
L]
[]
[]
[]
[]
[]
[]
[]
[]
[]

a)
$$_{1}H^{2} + _{1}H^{2} \rightarrow 2He^{4}$$
 b) $_{8}O^{16} + _{0}n^{1} \rightarrow _{7}N^{14} + 3 _{1}H^{1} + 2 _{-1}\beta^{0}$

This reaction is not balanced properly.

d) $_{7}N^{14} + _{0}n^{1} \rightarrow _{7}N^{16} + _{1}H^{1}$

$$^{(1)}_{16}S^{32} + {}_{1}H^{1} \rightarrow {}_{17}Cl^{35} + {}_{2}He^{4}$$

- 10. Which of the following is the best nuclear fuel?
 - a) Uranium 236 b) Plutonium - 239
 - c) Thorium 236 d) Neptunium - 239
- A proton moving with **u** m/s strikes a stationary nucleus of mass A. The ratio of final to initial kinetic energy of 11. [1] proton is

a)
$$\frac{(1-A)^2}{(1+A)^2} \frac{(1-u^2)}{(1+u)}$$

b) $\frac{A^2}{(A+1)^2} \frac{(1+u^2)}{(1-u^2)}$
c) $\frac{A^2}{(A-1)^2}$
d) $\frac{(1-A)^2}{(1+A)^2}$

In the nucleus of ₁₁Na²³, the number of protons, neutrons and electrons are 12.

a) 12, 11, 0	b) 11, 12, 0
c) 23,12,11	d) 23, 11, 12

13. X amount of energy is required to remove an electron from its orbit and Y amount of energy is required to [1] remove a nucleon from the nucleus.

a) X = Y	b) $X \ge Y$
c) Y > X	d) X > Y

The size of nucleus of an atom of mass number A is proportional to 14.

- a) A^{5/3} b) A^{1/3} d) A^{3/4}
- c) A^{2/3}
- 15. The density of nuclear matter is of the order of:
 - a) 10^{27} kg/m^3 b) 10¹⁷ kg/m³ c) 10^{12} kg/m^3 d) 10³ kg/m³
- Which of the following statements is **not** true for nuclear forces? 16.
 - a) They saturate as the separation between two b) They have about the same magnitude for nucleons increases. different pairs of nucleons.
 - c) They are stronger than Coulomb forces. d) They are always attractive.

17. The binding energy of deuteron is 2.2 MeV and that of ${}_{2}^{4}$ He is 28 MeV. If two deuterons are fused to form one [1] ${}_{2}^{4}$ He, then the energy released is

a) 23.6 MeV	b) 19.2 MeV
c) 30.2 MeV	d) 5.8 MeV

The ratio of the nuclear densities of two nuclei having mass numbers 64 and 125 is 18. [1]

AA

- b) $\frac{64}{125}$ a) 1
- c) $\frac{5}{4}$ d) $\frac{4}{5}$

[1]

[1]

[1]

[1]

[1]

19.	In an atomic bomb, the energy is released due to		[1]
	a) chain reaction of neutrons and $_{92}U^{236}$	b) chain reaction of neutrons and $_{92}U^{240}$	
	c) chain reaction of neutrons and $_{92}U^{238}$	d) chain reaction of neutrons and $_{92}U^{235}$	
20.	What is the rest mass energy of an electron?		[1]
	a) 0.51 MeV	b) 1 eV	
	c) 931 MeV	d) 831 MeV	
21.	The mass equivalent to $10 imes 10^5$ kWh energy will		[1]
	a) 4 $ imes$ 10 ⁻⁵ kg	b) 8×10^{-5} kg	
	c) 5 $ imes$ 10 ⁻⁵ kg	d) 3×10^{-5} kg	
22.	The mass of a neutron is the same as that of:		[1]
	a) an electron	b) a meson	
	c) a proton	d) a positron	
23.	•	73 u respectively. If the neutrons and protons combine to	[1]
	form a helium nucleus of mass 4.0015 u, the binding e		
	a) 27.3 MeV	b) 20.8 MeV	
2.4	c) 14.2 MeV	d) 28.4 MeV	F 4 3
24.	One milligram of matter converted into energy, will gi		[1]
	a) 9 \times 10 ³ joule	b) 9 joule	
	c) 9 \times 10 ⁵ joule	d) 9 $ imes$ 10 ¹⁰ joule	
25.	Which of the following particles can be added to the n properties?	ucleus of an atom without changing its chemical	[1]
	a) Alpha Particles	b) Electrons	
	c) Neutrons	d) Protons	
26.	A nucleus represented by the symbol ${}_{Z}X^{A}$ has:		[1]
	a) Z protons and A neutrons	b) Z neutrons and A - Z protons	
	c) A protons and Z - A neutrons	d) Z protons and A - Z neutrons	
27.	If M_0 is the mass of an oxygen isotope ${}_8O^{17}$, M_p and M_p	M_n are the masses of a proton and neutron respectively, the	[1]
	nuclear binding energy of the isotope is:		
	a) (8 M_p + 9 M_n - M_o) c^2	^{b)} (M _o - 8 M _p) c ²	
	^{c)} $(M_0 - 17 M_n) c^2$	d) (M_0 - 8 M_p - 9 M_n) c^2	
28.	Nucleus of an atom of mass no. 24 and charge no. 11 of	consists of	[1]
	a) 11 protons and 13 neutrons	b) 11 electrons, 11 protons and 13 neutrons	
	c) 11 protons and 13 electrons	d) 11 electrons, 11 protons and 11 neutrons	

29.	The radioactive decay of uranium into thorium is rep	presented by the equation ${}^{238}_{92}U o {}^{234}_{90}Th + x.$ What is x?	[1]
	a) an alpha particle	b) an electron	
	c) a neutron	d) proton	
30.	M_{n} and M_{p} represent the mass of neutron and protor	n respectively. An element having mass M has N neutrons	[1]
	and Z protons, then the correct relation will be		
	a) $M \sim N[M_n + M_p]$	b) $M > [NM_n + Z - M_p]$	
	c) $M = [N - M_n + Z - M_p]$	d) $M < [N - M_n + Z - M_p]$	
31.	\mathbf{r}_1 and \mathbf{r}_2 are the radii of atomic nuclei of mass numbers	pers 64 and 27 respectively. The ratio $\frac{r_1}{r_2}$ is	[1]
	a) $\frac{27}{64}$	b) $\frac{3}{4}$	
	c) $\frac{4}{3}$	d) $\frac{64}{27}$	
32.	The mass of a nucleus in its ground state is		[1]
	a) greater than the total mass of neutrons and	b) less than the total mass of neutrons and	
	protons.	protons.	
	c) equal to the total mass of neutron, protons	d) equal to the total mass of neutrons and	
	and electrons.	protons.	
33.	A nucleus represented by the symbol $\stackrel{A}{z}X$ has		[1]
	a) Z protons and A neutrons	b) A protons and Z - A neutrons.	
	c) Z protons and A -Z neutrons	d) Z neutrons and A -Z protons	
34.	What amount of energy is released by deuterium and	d tritium fusion?	[1]
	a) 12.6 eV	b) 60.6 eV	
	c) 17.6 eV	d) 28.3 eV	
35.	In nuclear reaction:		[1]
	$_{2}\mathrm{He}^{4}+_{z}X^{A}_{Z+2}Y^{A+3}+_{Z}^{M}{}^{A}$		
	where M denotes		
	a) neutron	b) positron	
	c) electron	d) proton	
36.	A radioactive element X has atomic number Z and a particle and a gamma ray. The new element is	tomic mass number A. It decays by the emission of an alpha	[1]
	a) ${A-4 \atop Z-2} Y$	b) $\frac{A-2}{Z-2}Y$	
	c) ${A+4 \atop Z+2} Y$	d) $\frac{A+1}{Z}Y$	
37.		nu of reactant and product nuclei are given in brackets:	[1]
	$egin{array}{lll} \mathbf{A} &+ \mathbf{B} &\longrightarrow \mathbf{C} \ (1.001) &+ \mathbf{D} \ (1.003) &+ \mathbf{QMev} \end{array}$ The value of energy Q is		
	a) 0.465 MeV	b) 1.862 MeV	
	1 1 1 1 1 A M X 7		

 $\mathsf{A}\mathsf{A}$

c) 1.234 MeV

d) 0.91 MeV

38.	What is missing in the following nuclear reaction? ${}_1{ m H}^2 + {}_1{ m H}^2 \longrightarrow {}_2{ m He}^3 + ?$		[1]
	a) meson	b) electron	
	c) neutron	d) positron	
39.	A freshly prepared radioactive source of half-life 2h permissible safe level. Calculate, the minimum time source.	emits radiation of intensity which is 64 times the after which it would be possible to work safely with this	[1]
	a) 12 h	b) 6 h	
	c) 24 h	d) 130 h	
40.	In the reaction ${}^2_1\mathrm{H} + {}^3_1\mathrm{H} o {}^4_2\mathrm{He} + {}^1_0n$, if the bindin MeV), then the energy (in MeV) released in this reac	g energies of 2_1 H, 3_1 H and 4_2 H are respectively a, b and c (in ction is	[1]
	a) c - a - b	b) c + a - b	
	c) a + b - c	d) a + b + c	
41.	When a hydrogen bomb explodes, which of the follo	wing is used?	[1]
	a) Nuclear Fusion	b) Nuclear Fission	
	c) Both nuclear fusion and nuclear fission	d) Neither nuclear fission nor nuclear fusion	
42.	The radius of $^{27}_{13}\mathrm{X}$ nucleus is R. The radius of $^{125}_{53}\mathrm{Y}$ r	nucleus will be	[1]
	a) $\frac{5}{3}$ R	b) $\left(\frac{13}{53}R\right)^{1/3}$	
	c) $\left(\frac{5}{3}R\right)^{1/3}$	d) $\left(\frac{13}{53}\right)^{1/3}$ R	
43.	has the mass closest to the mass of positro	n.	[1]
	a) Neutron	b) Neutrino	
	c) Electron	d) Proton	
44.	A neutron can cause fission in		[1]
	a) uranium-238	b) thorium	
	c) hydrogen	d) uranium-235	
45.	In any nuclear reaction the reactants and the resultan	ts must always be in conformity with the law of	[1]
	conservation of		
	a) mass number alone	b) energy alone	
	c) charge number alone	d) both charge and mass number	
46.	The energy released when 1 a.m.u. of mass is comple	etely converted into energy is	[1]
	a) 391 MeV	b) 931 MeV	
	c) 1 MeV	d) 797 MeV	
47.	The gravitational force between an H-atom and anoth $F = G \frac{M.m}{r^2}$, where r is in km and	her particle of mass m will be given by Newton's law:	[1]
		BE (DE 12.6	

a) M is not related to the mass of the hydrogen b) M = M_{proton} + M_{electron} - $\frac{BE}{c^2}$ (BE = 13.6

	atom	eV)	
	c) $M = m_{proton} + m_{electron}$	d) M = m _{proton} + m _{electron} $-\frac{ V }{c^2}$ (V =	
		magnitude of the potential energy of	
		electron in the H-atom)	
48.	Only proton contributes positive charge for the nucle	eus as:	[1]
	a) charge on neutrons balanced with charge on electrons	b) positive charge on neutrons discharges	
	c) neutrons are not present inside the nucleus	d) neutrons are electrically neutral entities	
49.	When a nucleus emits a photon, what happens to its	atomic number and its actual mass?	[1]
	a) Its atomic number and its actual mass both	b) Its atomic number remains the same but its	
	increase	actual mass decreases	
	c) Its atomic number and its actual mass both	d) Its atomic number and its actual mass	
	decrease	remain unchanged	
50.	A nucleus of uranium decays at rest into nuclei of the	orium and helium. Then	[1]
	a) The helium nucleus has more momentum	b) The helium nucleus has less momentum	
	than the thorium nucleus.	than the thorium nucleus.	
	c) The helium nucleus has more kinetic energy	d) The helium nucleus has less kinetic energy	
	than the thorium nucleus.	than the thorium nucleus.	
51.	The mass number of a nucleus is		[1]
	A. always less than its atomic number	Y	
	B. always more than its atomic number		
	C. sometimes equal to its atomic number		
	D. sometimes less than and sometimes more than its	s atomic number.	
	a) (C)	b) (B)	
	c) (D)	d) (A)	
52.	The binding energy per nucleon is maximum in case	of	[1]
	a) ²³⁵ ₉₂ U	b) ⁴ ₂ He	
	c) ¹⁴¹ ₅₆ Ba	d) ${}^{56}_{26}$ Fe	
53.	The volume of the nucleus is:		[1]
	a) directly proportional to the number of neutrons	b) directly proportional to the number of mesons	
	c) directly proportional to the atomic number	d) directly proportional to the mass number	
54.		with their radii R_1 and R_2 respectively. The ratio, $\frac{R_1}{R_2}$ is	[1]
	equal to	- $ -$	
	a) 1:3	b) 3 : 2	
	c) 1:2	d) 2 : 3	
55.	$X(n, \alpha)$, Li, then X will be		[1]

55. $X(n, \alpha)_3^7$ Li, then X will be

[1]

	a) 9 D	b) 11 Da	
	a) $\frac{9}{5}$ B	b) ¹¹ ₄ Be	
-	c) ${}_{5}^{10}$ B	d) ${}_{2}^{4}$ He	641
56.	Which of the following has the highest neutron ratio? $\Delta = \Omega^{16}$		[1]
	A. $_8O^{16}$		
	B. $_2\text{He}^4$		
	C. $_{26}$ Fe ⁵⁶		
	D. ₉₂ U ²³⁵		
	a) (C)	b) (B)	
	c) (D)	d) (A)	
57.	In a nuclear reaction which of the following is conser	ved?	[1]
	a) Charge	b) Sum of mass and energy	
	c) Momentum	d) All of these	
58.	In a fission reaction		[1]
	$^{236}_{92}{ m U} o {}^{117}X + {}^{117}Y + n + n$		
	the binding energy per nucleon of X and Y is 8.5 MeV	V whereas that of 236 U is 7.6 MeV. The total energy	
	liberated will be about		
	a) 2000 MeV	b) 200 keV	
	c) 2 MeV	d) 200 MeV	
59.	-	days to use up 2 kg of fuel, and if each fission gives 185	[1]
	MeV of useable energy. Avogadros number = 6×10	23 mol ⁻¹ .	
	a) 54.3 MW	b) 58.3 MW	
	c) 56.3 MW	d) 60.3 MW	
60.	The binding energies per nucleon for deuteron and an	α -particle are x_1 and x_2 respectively. The energy Q	[1]
	released in the reaction ${}^{2}\mathrm{H}_{1} + {}^{2}\mathrm{H}_{1} ightarrow {}^{4}\mathrm{He}_{2} + Q$ is		
	a) 2(x ₂ - x ₁)	b) $2(x_1 + x_2)$	
	c) $4(x_1 + x_2)$	d) 4(x ₂ - x ₁)	
61.	What is the main source of energy of the sun?		[1]
	a) Gravitational energy liberated during the	b) Nuclear fission of heavier unstable elements	
	slow contraction of the sun.	in the sun.	
	c) Combustion of pure carbon present in the	d) Nuclear fusion of lighter elements in the	
	sun.	sun.	
62.	The origin of nuclear force is ascribed to the exchang	e of the following particle between a pair of nucleons	[1]
	a) photon	b) mu-meson	
	c) electron	d) π -meson	

63.	A nucleus ${}_{n}X^{m}$ emits one alpha and two beta particle	s. The resulting nucleus is:	[1]
	a) _{n-2} X ^{m-4}	b) _{n-4} X ^{m-4}	
	c) _n X ^{m-4}	d) _n X ^{m-5}	
64.	When a nucleus in an atom undergoes radioactive de	cay, the electronic energy levels of the atom	[1]
	a) do not change for any type of radioactivity	b) change for β -radioactivity but not for others	
	c) change for α -radioactivity but not for others	d) change for α and β radioactivity but not for	
		γ -radioactivity	
65.	The binding energies per nucleon of deuteron ${}_1\mathrm{H}^2$ an	d helium (₂ He ⁴) nuclei are 1.1 MeV and 7 MeV	[1]
	respectively. If two deuterons fuse together to form a	helium nucleus, then energy produced is:	
	a) 5.9 MeV	b) 23.6 MeV	
	c) 26.9 MeV	d) 32.4 MeV	
66.	The ratio of the radii of the nuclei ${}_{14}\mathrm{A}^{27}$ and ${}_{52}\mathrm{Te}^{125}$	Te is approximately	[1]
	a) 40 : 17	b) 6 : 10	
	c) 13 : 52	d) 14 : 73	
67.	A nuclear reactor delivers a power of 10 W. Find fuel	l consumed by the reactor per hour, if its efficiency is 20%	[1]
	(Given, c = 3×10^8 m/s)		
	a) 8 \times 10 ⁻⁹ g/hr	b) 2×10^{-9} g/hr	
	c) 9×10^{-12} g/hr	b) 2×10^{-9} g/hr d) 2×10^{-6} g/hr	
68.	If radius of the $^{27}_{13}Al$ nucleus is taken to be $R_{ m Al}$, then	the radius of ${}^{125}_{53}Te$ nucleus is nearly	[1]
	a) $\frac{3}{5}R_{\text{Al}}$	b) $\frac{5}{3}R_{\rm Al}$	
	c) $\left(\frac{13}{53}\right)^{1/3} R_{Al}$	d) $\left(\frac{53}{13}\right)^{1/3} R_{\rm Al}$	
69.	Atomic weight of Boron is 10.81 and it has two isoto	pes ${}_5$ ${ m B}^{10}$ and ${}_5$ ${ m B}^{11}.$ Then the ratio of ${}_5$ ${ m B}^{10}$: ${}_5$ ${ m B}^{11}$ in	[1]
	nature would be		
	a) 10 : 11	b) 15 : 16	
	c) 19 : 81	d) 81 : 19	
70.	Nuclear binding energy is equivalent to:		[1]
	a) Mass of proton	b) Mass of neutron	
	c) Mass of nucleus	d) Mass defect of the nucleus	
71.	The radius of nucleus is:		[1]
	a) not related to its mass number	b) inversely proportional to its mass number	
	c) proportional to its mass number	d) proportional to the cube root of its mass number	
72.	The mass density of a nucleus varies with mass numb		[1]

	a) _A ²	b) constant	
	c) A	d) $\frac{1}{A}$	
73.	The reaction responsible for the production of light en	nergy from the sun is	[1]
	a) fission	b) nuclear	
	c) scission	d) fusion	
74.		he energy released per fission is 200 MeV. the number of	[1]
	neutrons emitted per second when 20 MW power is g		
	a) $3.9 imes 10^{19}$	b) 10 ¹⁸	
	c) 10 ¹⁹	d) 3.9×10^{20}	
75.	The constituents of atomic nuclei are believed to be		[1]
	a) protons only	b) neutrons and protons	
	c) electrons, protons and neutrons	d) electrons and protons	