

ABHINAV ACADEMY

UDUPI

CET25P14 ELECTRONIC DEVICES

Class 12 - Physics

Time Allowed: 1 hour and 30 minutes

Maximum Marks: 75

1.	In n-type semiconductor when all donor states are fill	ed, then the net charge density in the donor states becomes:	[1]
	a) < 1, but not zero	b) > 1	
	c) 1	d) zero	
2.	Distance between body centred atom and a corner ato	m in sodium (a = $4.225 \stackrel{o}{A}$) is	[1]
	a) _{2.54} Å	b) 3.17 Å	
	c) _{3.66} Å	d) _{2.99} Å	
3.	The example of p-type semiconductor is		[1]
	a) germanium doped with arsenic	b) pure germanium	
	c) germanium doped with boron	d) pure silicon	
4.	A half wave rectifier is being used to rectify an altern	ating voltage of frequency 50 Hz. The number of pulses of	[1]
	rectified current obtained in one second is	Y	
	a) 50 Hz	b) 200 Hz	
	c) 100 Hz	d) 25 Hz	
5.	The valence electron in an alkali metal is a		[1]
	a) s-electron	b) p-electron	
	c) d-electron	d) f-electron	
6.	In an extrinsic semiconductor, the number density of	holes is 4 $ imes$ 10 ²⁰ m ⁻³ . If the number density of intrinsic	[1]
	carriers is $1.2 imes 10^{15}$ m ⁻³ , the number density of electron	trons in it is	
	a) $2.4 \times 10^{10} \text{ m}^{-3}$	b) $3.2 \times 10^{10} \text{ m}^{-3}$	
	c) $1.8 \times 10^9 \text{m}^{-3}$	d) $3.6 \times 10^9 \text{m}^{-3}$	
7.	Photo diodes are used to detect		[1]
	a) IR rays	b) radio waves	
	c) optical signals	d) gamma rays	
8.	At a certain temperature in an intrinsic semiconductor	r, the electrons and holes concentration is $1.5 imes10^{16}{ m m}^{-3}$.	[1]
	When it is doped with a trivalent dopant, hole concen	tration increases to 4.5 $ imes$ 10 ²² m ⁻³ . In the doped	
	semiconductor, the concentration of electrons (n_e) will	l be:	

AA

	$5 imes10^9\mathrm{m}^{-3}$	$3 imes10^6\mathrm{m}^{-3}$	
	c) $5 \times 10^7 \text{m}^{-3}$	d) $6.75 \times 10^{38} \mathrm{m}^{-3}$	
9.	Carbon (C), silicon (Si) and germanium (Ge) have for of the following statements is most appropriate?	ur valence electrons each. At room temperature, which one	[1]
	a) The number of free conduction electrons is significant only in Si, but small in C.	b) The number of free conduction electrons is significant in C, but small in Si and Ge.	
	c) The number of free conduction electrons is significant in all the three.	d) The number of free conduction electrons is negligible in all the three.	
10.	The relation between the forward current \mathbf{I}_{f} and saturate	ation current I _s for p-n junction diode is:	[1]
	a) $I_f I_s = 1$	b) $I_f = I_s$	
	C) $I_f = I_s \left[rac{qV}{KT} - 1 ight]$	d) $I_f = I_s e^{(qV/KT)-1}$	
11.	Diode is used as a/an		[1]
	a) rectifier	b) amplifier	
	c) modulator	d) oscillator	
12.	In an n-type semiconductor, the donor energy level lie	es	[1]
	a) in the conduction band	b) just below the conduction band	
	c) just above the valance band	d) at the center of the energy gap	
13.	The resistivity of a semiconductor at room temperature	re is in between:	[1]
	a) 10^{-3} to $10^6 \Omega$ cm	b) 10^{10} to $10^{12} \Omega$ cm	
	c) 10^{-2} to $10^{-5} \Omega$ cm	d) 10^6 to $10^8~\Omega$ cm	
14.	An intrinsic semiconductor, at the absolute zero temp	erature, behaves like a/an	[1]
	a) insulator	b) superconductor	
	c) n-type semiconductor	d) p-type semiconductor	
15.		veen the bottom of the conduction band E_{C} and the donor	[1]
	energy level E_D is of the order of:		
	a) 0.01 eV	b) 10 eV	
	c) 1 eV	d) 0.1 eV	
16.	Forward biasing of p-n junction offers		[1]
	a) zero resistance	b) high resistance	
	c) infinite resistance	d) low resistance	
17.	12 V battery is applied in forward bias across a circui		[1]
	potential is dropped across the p-n junction, and curre	ent is 2 $ imes$ 10 ⁻³ A. The resistance R is	
	a) 5.7 $ imes$ 10 ⁴ Ω	b) 5.7×10^{3}	
	c) 5.7 $ imes$ 10 ² Ω	d) 5.7×10^5	

AA

18.	For forward biasing a p-n junction, the positive terminal	of the battery is connected to	[1]
	a) n-type crystal	b) either p-type or n-type crystal	
	c) p-type crystal	l) neither p-type nor n-type crystal	
19.	The energy gap between the valence and conduction bar	nds of a substance is 6 eV. The substance is a:	[1]
	a) semiconductor	b) superconductor	
	c) insulator	l) conductor	
20.	Suitable impurities are added to a semiconductor depend	ling upon its use. This is done to	[1]
	a) increase its electrical resistivity	o) enable it to withstand high voltage	
	c) increase its electrical conductivity	l) increase its life	
21.	Which of the following is the weakest kind of bonding is	n solids?	[1]
	a) Van der Waals b	b) Covalent	
	c) Metallic	d) Ionic	
22.	When an intrinsic semiconductor is doped with a small a	amount of trivalent impurity, then:	[1]
	a) its resistance increases.	o) it becomes a p-type semiconductor.	
	c) there will be more free electrons than holes	d) dopant atoms become donor atoms.	
	in the semiconductor.		
23.	A p-n junction diode is connected to a battery of emf 5.5	5 V and external resistance 5.1 k Ω . The barrier potential	[1]
	in the diode is 0.4 V. The current in the circuit is: $5.1k\Omega$		
		Y	
	5.5 V		
	a) 1 mA t	b) 1.08 mA	
	c) 0.08 mA	l) 1 A	
24.	In p-type semiconductor,		[1]
	A. major current carrier are electrons		
	B. major carrier are mobile negative ions		
	C. major carrier are mobile holes		
	D. the number of mobile holes exceeds the number of a	cceptor atoms	
	a) Option C b	b) Option A	
	c) Option D	l) Option B	
25.	When trivalent impurity is mixed in a pure semiconduct	or, the conduction is mainly due to	[1]
	a) holes b	b) protons	
	c) positive ions	l) electrons	
26.	In a good conductor, the energy gap between the valence	e and conduction bands is	[1]

	a) infinite	b) 6 eV	
	c) zero	d) 1 eV	
27.	Which one of the following elements will require the	e highest energy to take out an electron from them?	[1]
	Pb, Ge, C and Si		
	a) C	b) Ge	
	c) Pb	d) Si	
28.	Holes are charge carriers in		[1]
	a) intrinsic and p-type semiconductors	b) n-type semiconductor	
	c) intrinsic semiconductor only	d) p-type semiconductor only	
29.	The dominant mechanisms, due to the concentration	gradient, for motion of charge carriers in silicon p-n	[1]
	junction are:		
	a) Diffusion of holes from p to n and electrons from n to p	b) Diffusion of electrons only from n to p	
	c) Diffusion of holes only from p to n	d) Diffusion of holes from n to p and electrons from p to n	
30.	The unidirectional flow of current through p-n juncti	on makes it ideal to be used as	[1]
	a) photoelectricity	b) modulator	
	c) oscillator	d) rectifier	
31.	In a middle of the depletion layer of a reverse biased	p-n junction, the	[1]
	a) electric field is maximum	b) potential is zero	
	c) potential is maximum	d) electric field is zero	
32.	The potential barrier in the depletion layer is due to		[1]
	a) Holes	b) Forbidden gap	
	c) Electrons	d) Ions	
33.	The intrinsic semiconductor becomes an insulator at:	:	[1]
	a) -100 C	b) 300 K	
	c) 0 C	d) 0 K	
34.	A solid having uppermost energy band partially filled	d with electrons is called	[1]
	a) non-metal	b) semi-conductor	
	c) insulator	d) conductor	
35.	A p-type semiconductor can be obtained by adding		[1]
	a) phosphorus to pure germanium	b) gallium to pure silicon	
	c) arsenic to pure silicon	d) antimony to pure germanium	
36.	If n_e and n_h are the number of electrons and holes in	pure germanium, then	[1]
	a) $n_e = finite and n_h = 0$	b) $n_e = n_h$	

	c) n _e < n _h	d) $n_e > n_h$	
37.	Semiconductors behave like insulators at		[1]
	a) 273 K	p) 0 ₀ C	
	c) 0 K	d) 300 K	
38.	In semiconducting materials, the mobilities of electrist is true?	rons and holes are μ_e and μ_h respect. Which of the following	[1]
	a) $\mu_e=\mu_h$	b) $\mu_e > \mu_h$	
	c) $\mu_e < 0; \mu_h > 0$	d) $\mu_e < \mu_h$	
39.	The impurity atoms to be mixed in pure silicon to for	orm p-type semiconductor are, of	[1]
	a) aluminum	b) phosphorus	
	c) germanium	d) antimony	
40.	In a reverse-biased p-n junction, when the applied b	ias voltage is equal to the breakdown voltage, then	[1]
	 a) current remains constant while voltage increases sharply 	b) voltage remains constant while current increases sharply	
	c) current and voltage decrease	d) current and voltage increase	
41.	If a p-n diode is reverse biased, then the resistance r	neasured by an ohmmeter will be	[1]
	a) low	b) infinite	
	c) zero	d) high	
42.	In the depletion region of an unbiased p-n junction	diode, there are	[1]
	a) immobile ions	b) electrons	
	c) mobile ions	d) holes	
43.	In an unbiased p-n junction,		[1]
	a) undetermined	b) high potential at n side and low potential at p side	
	c) p and n both are at same potential	d) high potential at p side and low potential at n side	
44.	The output from a full wave rectifier is		[1]
	a) a pulsating unidirectional voltage	b) a dc voltage	
	c) zero	d) unidirectional voltage having ripples	
45.	Number of atoms per unit cell in bcc lattice is	, 0 0 H	[1]
	a) 9	b) 2	
	c) 4	d) 1	
46.	In forward bias, the width of a potential barrier in a		[1]
	a) remains constant	b) increases	
	c) decreases	d) first remains constant then decreases	

47.	Current through the ideal diode is: 100Ω		[1]
	2V 5V		
	÷ ÷		
	a) 20 A	b) $(\frac{1}{20})$ A	
	c) zero	d) $(\frac{1}{50})$ A	
48.	The number of valence electrons in a good conducto	r is generally	[1]
	a) three or less than three	b) four	
	c) six or more than six	d) five	
49.	A donor impurity results in		[1]
	a) increase of resistance of the semiconductor	b) production of n-semiconductor	
	c) energy bands just above the filled valency	d) production of p-semiconductor	
50.	Rectification is the process of conversion of		[1]
	a) low d.c. into high d.c.	b) low a.c. into high a.c.	
	c) a.c. into d.c.	d) d.c. into a.c.	
51.	The difference in variation of resistance with temper	rature in a metal and semiconductor is due to	[1]
	a) type of bonding	b) variation of scattering with temperature	
	c) variation in number of charge carries with temperature	d) crystal structure	
52.	In a p-type semiconductor, the majority carriers of c	urrent are	[1]
	a) electrons	b) neutrons	
	c) holes	d) protons	
53.	When a forward bias is applied to a p-n junction, it		[1]
	a) reduces the majority carrier current to zero	b) lowers the potential barrier	
	c) free electrons and holes move away from	d) raises the potential barrier	
54.	the juction Atomic packing factor of simple cubic cell is		[1]
54.		L) π	[+]
	a) $\frac{\pi}{6}$	b) $\frac{\pi}{8}$ d) $\pi \frac{\sqrt{3}}{8}$	
	c) $\frac{\pi}{3\sqrt{2}}$	0	[4]
55.	Energy required to break one bond in DNA is approx	-	[1]
	a) $\approx 2.1 \mathrm{eV}$	b) $\approx 1 \mathrm{eV}$	
	c) $\approx 0.1 \text{eV}$	d) $\approx 0.01 \mathrm{eV}$	
56.	Forbidden energy gap for a diamond is about:		[1]
	a) 1.5 eV	b) 6 eV	
	c) 1 eV	d) 0.6 eV	

57.	Energy gap between valence band and conduction band of a semiconductor is		[1]
	a) infinite	b) zero	
	c) 10 eV	d) 1 eV	
58.	The formation of depletion region in a p-n junction d	iode is due to	[1]
	a) movement of dopant atoms	b) drift of electrons only	
	c) diffusion of both electrons and holes	d) drift of holes only	
59.	An n-type Ge is obtained on doping the Ge-crystal w	ith	[1]
	a) phosphorus	b) gold	
	c) aluminum	d) boron	
60.	The cause of the potential barrier in a p-n diode is		[1]
	a) depletion of positive charges near the	b) the concentration of positive and negative	
	junction	charges near the junction	
	c) concentration of positive charges near the junction	d) depletion of negative charges near the junction	
61.	The probability of finding an electron in Fermi energ	y level is:	[1]
	a) 50%	b) 20%	
	c) 0%	d) 100%	
62.	The state of energy gained by valence electrons when applied is called	the temperature is raised or when an electric field is	[1]
	a) valence band	b) non valence band	
	c) conduction band	d) forbidden band	
63.	In a p-type semiconductor, germanium is doped with		[1]
	a) aluminium	b) all of these	
	c) gallium	d) boron	
64.	The energy gap between the conduction band and val	ence band is of the order of 0.07 eV. It is a/an	[1]
	a) insulator	b) semiconductor	
	c) conductor	d) alloy	
65.	During the formation of a p-n junction:		[1]
	a) both the diffusion current and drift current remain constant.	b) diffusion current keeps increasing.	
	 c) diffusion current remains almost constant but drift current increases till both currents become equal. 	d) drift current remains constant.	
66.	For the forward biasing of a p-n junction diode, whic	h of the following statements is not correct?	[1]
	a) Forward current is due to the diffusion of both holes and electrons.	b) Minority carrier injection occurs.	

	c) The potential barrier decreases.	d) Width of depletion layer increases.	
67.	At equilibrium, in a p-n junction diode the net current	is	[1]
	a) due to drift of minority charge carriers	b) due to diffusion of majority charge carriers	
	 c) zero as diffusion and drift currents are equal and opposite 	d) zero as no charge carriers across the junction	
68.	The behavior of Ge as a semiconductor is due to the v	vidth of	[1]
	a) forbidden band being small and narrow	b) forbidden band being large and wide	
	c) conduction band being small and narrow	d) conduction band being large	
69.	The electrical conductivity of a semiconductor increas	ses when electromagnetic radiation of wavelength shorter	[1]
	than 2480 nm is incident on it. The band gap (in eV) f	for the semi conductor is:	
	a) 1.1	b) 0.9	
	c) 0.7	d) 0.5	
70.	The typical ionization energy of a donor in silicon is		[1]
	a) 1.0 eV	b) 10.0 eV	
	c) 0.001 eV	d) 0.1 eV	
71.	A Ge specimen is doped with Al. The concentration o	of acceptor atoms is $pprox 10^{21}$ atoms m ⁻³ . Given that the	[1]
	intrinsic concentration of electron-hole pair is $pprox 10^{19}$	m ⁻³ , the concentration of electrons in the specimen is	
	a) 10 ¹⁷ m ⁻³	b) $10^2 \mathrm{m}^{-3}$	
	c) 10^{15} m^{-3}	d) 10^4 m^{-3}	
72.	In n-type semiconductors, majority charge carriers are		[1]
	a) holes	b) protons	
	c) electrons	d) neutrons	
73.	C and Si both have the same lattice structure, having	4 bonding electrons in each. However, C is an insulator	[1]
	whereas Si is an intrinsic semiconductor. This is beca	use	
	A. In case of C the valence band is not completely fil	-	
	B. In case of C the conduction band is partly filled ev		
	C. The four bonding electrons in the case of C lie in t third.	the second orbit, whereas in the case of Si they lie in the	
		the third orbit, whereas for Si they lie in the fourth orbit.	
	a) Option B	b) Option A	
74.	c) Option D A p-n junction has a thickness of the order of	d) Option C	[1]
, .		b) 1 mm	[1]
	a) 1 cm	b) 1 mm	
_	c) 10 ⁻⁶ m	d) 10^{-12} cm	[1]
75.	Sodium has body-centered packing. If the distance be	tween two nearest atoms is 3.7 $\overset{\mathrm{o}}{\mathrm{A}}$, then lattice parameter is	[1]

a) 3.3 Å	b) $_{3.9}{ m \overset{o}{A}}$
c) _{4.8} Å	d) $_{4.3}{ m \mathring{A}}^{ m o}$

BHIL