

ABHINAV ACADEMY

UDUPI

CET25P4 MOVING CHARGES AND MAGNETISM

Class 12 - Physics

Time Allowed: 1 hour and 30 minutes

- A steel wire of length l has a magnetic moment M. It is then bent into a semicircular arc. The new magnetic [1] moment is

 a) Ml
 b) M / l
 - c) $\frac{2M}{\pi}$ d) M
- 2. The resistance of an ammeter is 13 Ω and its scale is graduated for a current up to 100 A. After an additional [1] shunt has been connected to this ammeter, it becomes possible to measure currents up o 750 A by this meter. The value of shunt resistance is:
 - a) 20Ω b) $2K\Omega$ c) 2Ω d) 0.2Ω
 - c) 2Ω d) 0.2Ω
- 3. A galvanometer can be changed into an ammeter by providing:
 - a) low resistance in series b) high resistance in parallel
 - c) low resistance in parallel d) high resistance in series
- Two infinitely long wires carry currents in opposite directions. Then the field at a point P lying midway between [1] them is
 - a) twice the field due to each wire alone
 - c) zero

- b) square of the field due to each wire alone
- d) half of the field due to each wire alone
- 5. A current of 5 A is flowing from east to west in a long straight wire kept on a horizontal table. The magnetic [1] field developed at a distance of 10 cm due south on the table is:
 - a) 2×10^{-5} T acting upwards b) 2×10^{-5} T acting downwards c) 1×10^{-5} T acting downwards d) 1×10^{-5} T acting upwards
- 6. A proton and an alpha particle enter in a uniform magnetic field with the same velocity. The time period of [1] rotation of the alpha particle will be:
 - a) three times that of the protonb) four times that of the protonc) same as that of the protond) two times that of the proton
- 7. A finite straight wire carries a current of 3 A, where it is a 2 m long and weighs around 240 g. If it is suspended [1] in the mid-air by a uniform magnetic field then calculate the field B. [Acceleration due to gravity = 9.8 m/s²]

AA

- a) 0.42 T b) 0.39 T
- c) 0.61 T d) 0.57 T

Maximum Marks: 75

8.	. A vertical straight conductor carries a current vertically upwards. A point P lies to the east of it at a small		[1]
	distance and another point Q lies to the west in the same direction. The magnetic field at P is:		
	a) greater or less than at Q, depending upon the	b) greater than at Q	
	strength of the current		
	c) less than at Q	d) same as at Q	
9.	A straight conducting rod of length l and mass m is su	spended in a horizontal plane by a pair of flexible strings	[1]
	in a magnetic field of magnitude B. To remove the ter	nsion in the supporting strings, the magnitude of the current	
	in the wire is		
	a) $\frac{l B}{mg}$	b) $\frac{mgB}{l}$	
	c) $\frac{mg}{lB}$	d) $\frac{mgl}{B}$	
10.	The radius of the circular path of an electron moving	in magnetic field perpendicular to its path is equal to:	[1]
	a) <u>me</u>	b) $\frac{mv}{Be}$	
	c) $\frac{mE}{B}$	d) $\frac{Be}{mv}$	
11.	A tape-recorder records sound in the form of		[1]
	a) magnetic energy	b) the magnetic field on the tape	
	c) electrical energy	d) variable resistance on the tape	
12.	A current carrying wire kept in a uniform magnetic fi	eld, will experience a maximum force when it is	[1]
	a) at an angle of 60 ⁰ to the magnetic field	b) parallel to the magnetic field	
	c) at an angle of 45° to the magnetic field \checkmark	d) perpendicular to the magnetic field	
13.	The deflecting torque acting on the coil of a galvanon	neter is	[1]
	a) inversely proportional to number of turns.	b) inversely proportional to area of the coil.	
	c) inversely proportional to current flowing.	d) directly proportional to the magnetic field	
		strength.	
14.	A proton and an alpha particle both enter a region of a	uniform magnetic field B, moving at right angles to the	[1]
	field B. If the radius of circular orbits for both the par	ticles is equal and the kinetic energy acquired by the proton	

is 1 MeV, the energy acquired by the alpha particle will be:

a) 1 MeV	b) 0.5 MeV
c) 4 MeV	d) 1.5 MeV

15. The magnetic induction at the centre O of the current carrying bent wise shown in the adjoining figure is: [1]

b)
$$\frac{\mu_0 I \alpha}{4\pi} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

d) $\frac{\mu_0 I}{4\pi R_2} \alpha$

16.	A circuit contains an ammeter, a battery of 30 V and a resistance of 40.8 ohm all connected in series. If the ammeter has a coil of resistance 480 ohm and a shunt of 20 ohm, the reading in the ammeter will be:		[1]
	a) 2 A	b) 0.25 A	
	c) 0.5 A	d) 1 A	
17.	Current sensitivity of a moving coil galvanometer is sum to unit voltage applied) is 20 div/V. The resistance of the	5 div/mA and its voltage sensitivity (angular deflection per e galvanometer is:	[1]
	a) 250 Ω	b) 40Ω	
	c) 25Ω	d) 500 Ω	
18.	A circular current loop of magnetic moment M is in a work done to rotate the loop by 30° about an axis per	an arbitrary orientation in an external magnetic field B. The pendicular to its plane is	[1]
	a) zero	b) $\frac{MB}{2}$	
	c) MB	d) $\sqrt{3}\frac{MB}{2}$	
19.	Tesla is the unit of:		[1]
	a) magnetic flux	b) magnetic induction	
	c) electric field	d) electric flux	
20.	If electron velocity is $2\hat{i}+3\hat{j}$ and it is subjected to n	nagnetic field of $4\hat{k}$, then its	[1]
	a) path will not change	b) speed will change	
	c) both path will change and speed will change	d) path will change	
21.	Circular loop of a wire and a long straight wire carry	currents I_0 and I_e respectively as shown in the figure.	[1]
	Assuming that these are placed in the same plane, the	magnetic	
	fields will be zero at the centre O of the loop, when separation H is		
	a) $\frac{I_c R}{I_e \pi}$	b) $\frac{I_e R}{I_c \pi}$	
	c) $\frac{I_c \pi}{I_c R}$	d) $\frac{I_e R}{I_c \pi}$	
22.	The magnetic moment of a current (l) carrying circul	ar coil of radius (r) and number of turns (n) varies as	[1]
	a) $\frac{1}{r^2}$	b) r	
	c) $\frac{1}{r}$	d) _r 2	
23.	In a mass spectrometer used for measuring the masse potential V and then made to describe semicircular pa	s of ions, the ions are initially accelerated by an electric aths of radius R using a magnetic field B. If V and B are	[1]

kept constant, the ratio $\left(\frac{\text{charge on the ion}}{\text{mass of the ion}}\right)$ will be proportional to a) $\frac{1}{R}$ b) R^2

3/10

A ring of radius r is uniformly charged with charge q. It is rotated with angular velocity ω, then magnetic [1] moment developed by the ring is

a)
$$\frac{2}{qr^2\omega^2}$$
 b) $\frac{q\omega}{2r^2}$
c) $\frac{q}{r^2\omega^2}$ d) $\frac{qr^2\omega}{2}$

25. An electron having charge 1.6×10^{-19} C and mass 9×10^{-31} kg is moving with 4×10^6 m/s speed in a [1] magnetic field of 2×10^{-1} tesla in a circular orbit. The force acting on an electron and the radius of circular orbit will be

- a) 1.28×10^{15} N, 1.2×10^{-12} m b) 1.28×10^{-13} N, 1.1×10^{-4} m c) 1.28×10^{-14} N, 1.1×10^{-3} m d) 1.28×10^{16} N, 1.2×10^{-10} m
- 26. If a number of turns in the moving coil galvanometer becomes half, then the deflection for the same current will **[1]** become:

a) same	b) half
c) double	d) four times
Λ	we obtain the second state field for the other others for

27. A proton travelling at 23° w.r.t the direction of a magnetic field of a strength 2.6 mT experiences, a magnetic [1] force of 6.5×10^{-17} N. What is the speed of the proton?

a) 6×10^5 m/second	b) 8×10^5 m/second
\ _	
c) 2×10^5 m/second	a 4×10^5 m/second

28. Electron is moving perpendicular to z-axis; the magnetic field B₀ is present along the z-axis; the radius of the [1] circular path is a. Angular momentum is

b) eB₀a

d) $e^2 B_0^2 a^2$

a) 0

24.

c) $_{eB_0a^2}$

29. A galvanometer of 50 ohm resistance has 25 divisions. A current of 4×10^{-4} A gives a deflection of 1 division. [1] To convert this galvanometer into a voltmeter having a range of 25 V, it should be connected with a resistance of:

a) 2,450 Ω in series	b) 2,450 Ω as a shunt
c) 2,550 Ω in series	d) 2,500 Ω as a shunt

30. A uniform magnetic field acts at right angles to the direction of motion of electrons. As a result, the electron [1] moves in a circular path of radius 2 cm. If the speed of the electrons is doubled, then the radius of the circular path will be:

a) 2.0 cm	b) 4.0 cm
c) 1.0 cm	d) 0.5 cm

31. A proton and an α -particle enters a uniform magnetic field perpendicular to y-axis with the same speed. If [1] proton takes 25μ sec to make 5 revolutions, then time period for the α -particle would be

0		1
a) 50	μ sec	b) 25 µsec

c) 10 µsec

d) 5 μ sec

32. A long wire carries a steady current. It is bent into a circle of one turn and the magnetic field at the centre of the [1] coil is B. It is then bent into a circular loop of n turns. The magnetic field at the centre of the coil will be

- b) $2n^2B$ a) nB
- d) $n^2 B$ c) 3n²B

In an ammeter 4% of the mains current is passing through galvanometer. If the galvanometer is shunted with a 3 33. [1] Ω resistance.

- a) 116 Ω b) 120 Ω
- c) 118 Ω d) 117 Ω

A magnetic needle lying parallel to a magnetic field requires W units of work to turn it, through 60° . The torque [1] 34. needed to maintain the needle in this position will be

a) $\sqrt{3}W$	b) $\frac{\sqrt{3}W}{2}$
c) 2W	d) W

In an ammeter, 0.2% of the main current passes through the galvanometer. If the resistance of the galvanometer 35. [1] is G, the resistance of the ammeter will be:

a) $\frac{1}{499}G$	b) $rac{499}{500}G$
c) $\frac{500}{499}G$	d) $\frac{1}{500}G$

[1] A metallic rod of mass per unit length 0.5 kg m⁻¹ is lying horizontally on a smooth inclined plane which makes 36. an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is

- a) 5.98 A b) 11.32 A c) 7.14 A d) 14.76 A
- 37. A bar magnet is equivalent to
 - a) toroid carrying current

c) solenoid carrying current

b) circular coil carrying current

- d) straight conductor carrying current
- 38. A rectangular coil of length 0.12 m and width 0.1 m having 50 turns of wire is suspended vertically in a uniform [1] magnetic field of strength 0.2 weber/m². The coil carries a current of 2 A. If the plane of the coil is inclined at an angle of 30° with the direction of the field, the torque required to keep the coil in stable equilibrium will be:

a) 0.12 Nm	b) 0.20 Nm
c) 0.24 Nm	d) 0.15 Nm

39. An electron is travelling along the X-direction. It encounters a magnetic field in the Y-direction. Its subsequent [1] motion will be:

a) a circle in the YZ-plane	b) straight line along the X-direction	
c) a circle in the XZ-plane	d) a circle in the XY-plane	
he magnetic field in a circular loop of diameter 0.1 n	n carrying a current of 1 A is	[1]

40. The magnetic field in a circular loop of diameter 0.1 m carrying a current of 1 A is

a) $3.8 imes 10^{-5}T$	b) $4.4 imes 10^{-5}T$
c) $1.25 imes 10^{-5}T$	d) $2.8 imes 10^{-5}T$

41. A current carrying loop is placed in a uniform magnetic field. The torque acting on it does not depend upon the [1]

- a) shape of the loopb) magnetic fieldc) area of the loopd) value of current
- 42. A long straight wire of circular cross-section (radius a) carries a steady current I and the current I is uniformly [1] distributed across this cross-section. Which of the following plots represents the variation of the magnitude of magnetic field B with distance centre of the wire?

- 43. A circular loop of area 0.01 m² carrying a current of 10 A, is held perpendicular to a magnetic field of intensity [1]
 0.1 T. The torque acting on the loop is
 - a) 0.01 Nm c) zero b) 0.8 Nm d) 0.001 Nm
- 44. The force on a charge due to a magnetic field can act
 - a) on a charge which is at rest

46.

b) moving in the opposite direction of the magnetic field

d) moving in the perpendicular direction

- c) which is moving in the direction of the magnetic field
- 45. Two concentric and coplanar circular loops P and Q have their radii in the ratio 2: 3. Loop Q carries a current 9 [1] A in the anti-clockwise direction. For the magnetic field to be zero at the common centre, loop P must carry
 - a) 9 A in clockwise directionb) 3 A in clockwise directionc) 6 A in anti-clockwise directiond) 6 A in the clockwise direction.The SI unit of magnetic pole strength is[1]a) ampere metre2b) ampere metre2c) ampere per metred) ampere metre2
- 47. Two horizontal thin long parallel wires, separated by a distance r carry current I each in the opposite directions. [1]The net magnetic field at a point midway between them, will be

a)
$$\left(\frac{\mu_0 I}{2\pi r}\right)$$
 vertically downward b) zero

	c) $\left(\frac{\mu_0 I}{\pi r}\right)$ vertically downward	d) $\left(\frac{2\mu_0 I}{r}\right)$ vertically upward	
48.	A current-carrying coil is subjected to a uniform magnetic field. The coil will orient so that its plane becomes: [1]		[1]
	a) perpendicular to the magnetic field	b) inclined to 45° to the magnetic field	
	c) parallel to the magnetic field	d) inclined at any arbitrary angle to the magnetic field	
49.	The magnetic field intensity due to a thin wire carryin	g current I in the figure shown is	[1]
	I O R 2α R		
	a) $rac{\mu_0}{2\pi R}(\pi+lpha- anlpha)$	b) $\frac{\mu_0 T}{2\pi R} (\pi - \alpha + \tan \alpha)$	
	c) $rac{\mu_o I}{2\pi R}(\pi-lpha)$	d) $\frac{\mu_o I}{2\pi R}(\pi + \alpha)$	
50.	The ratio of the time period of alpha particle to that of	f a proton circulating with the same speed in the same	[1]
	uniform magnetic field is:		
	a) 1 : 2	b) $1:\sqrt{2}$	
	c) 2 : 1	d) $\sqrt{2}$: 1	
51.	Three particles having charges in the ratio of 2 : 3 : 5 Thomson experiment. Their masses are in the ratio of	produces the same point on the photographic film in the .	[1]
	I nomson experiment. I neir masses are in the ratio of:		
	a) 3:5:2	b) 5 : 3 : 2	
-	c) 2 : 3 : 5	d) 15 : 10 : 6	641
52.	A long solenoid carrying a current produces a magnetic field B along its axis. If the current is doubled and the [1]		[1]
	a) D	B	
		$(1) \frac{1}{2}$	
E2	C) 2B	(I) 4B	[1]
55.	iwo identical galvanometers are converted into an ammeter and a milliammeter. The resistance of the shunt of [1] milliammeter through which the current passes through will be		[1]
	a) zero	b) less	
		d) more	
54	A galvanometer of resistance 25Ω is shunted by a 2.5	Ω wire. The part of total current L _a that flows through the	[1]
0.11	galvanometer is given by		[-]
	$\frac{I}{I} = \frac{2}{I}$	b) $\frac{I}{I} = \frac{4}{4}$	
	a) $\frac{I}{I_0} = \frac{1}{11}$	$\begin{array}{c} 0 \end{array} \begin{array}{c} 1 \\ \overline{I_0} \end{array} = \frac{1}{11} \\ 1 \\ 1 \end{array}$	
	c) $\frac{1}{I_0} = \frac{1}{11}$	a) $\frac{1}{I_0} = \frac{1}{11}$	[1]
55.	the following quantities will not increase?	non rou is inserted in the solehold along its axis. Which of	[1]
	a) The magnetic field at the centre	b) The self-inductance of the solenoid	
	c) The rate of heating	d) The magnetic flux linked with the solenoid	
	-,	-, magnetic mail minea with the solehold	

56. A galvanometer having 30 divisions has a current sensitivity of 20 μ A/div. It has a resistance of 25 ohm. How [1]

7/10

will you convert it into an ammeter measuring upto 1 ampere. Find the shunt to be used.

a) 0.30 Ω	b) 0.15 Ω
c) 0.015 Ω	d) 0.030 Ω

57. A voltmeter has range V. What resistance should be connected in series with it to increase its range to nV? Initial **[1]** resistance is R₀.

a)
$$\frac{R_0}{n}$$
 b) $(n - 1)R_0$
c) nR_0 d) $(n + 1)R_0$

- 58. A positively charged particle moving due east enters a region of uniform magnetic field directed vertically [1]upward. The particle will:
 - a) move in a circular path with an increased speed
 b) get deflected in a vertically upward direction
 c) move in a circular path with a decreased speed
 d) move in a circular path with a uniform speed
- 59. A charged particle is moving in a uniform magnetic field in a circular path with a radius R. When energy of the **[1]** particle is doubled, then the new radius will be:

a)
$$R\sqrt{2}$$
 b) $\frac{R}{\sqrt{2}}$
c) $\frac{R}{2}$ d) 2R

60. The current I flowing through a conductor of radius r is uniformly distributed across its cross-section. Which of **[1]** the following graphs represents the variation of magnitude of magnetic field \vec{B} with distance x from the axis of the conductor?

61. To convert a galvanometer into a voltmeter:

a) a low resistance is connected in series

b) a low resistance is connected in parallel

d) a high resistance is connected in parallel

- c) a high resistance is connected in series
- 62. A particle having charge 100 times that of an electron is revolving in a circular path by radius 0.8 m with one [1] rotation per second. The magnetic field produced at the centre is:
 - a) $10^{-16}\mu_0$ b) $10^{17}\mu_0$ c) $10^{-15}\mu_0$ d) $10^{-17}\mu_0$
- 63. An electron having mass m, charge q and kinetic energy E enters a uniform magnetic field B perpendicularly. [1] Then its frequency of rotation will be:

8/10

$$\begin{array}{cccccc} 1 & \frac{g B}{2\pi 2} & (b) & \frac{g B}{2\pi 2} \\ (c) & \frac{g B}{2\pi 2} & (b) & \frac{g B}{2\pi 2} \\ (c) & \frac{g B}{2\pi 2} & (c) & \frac{g B}{2\pi 2} \\ (c) & \frac{g B}{2\pi 2} & \frac{g B}{2\pi 2} \\ (c) & \frac{g B}{2\pi 2} & \frac{g B}{2\pi 2} \\ (c) & \frac{g B}{2\pi 2} & \frac{g B}{2\pi 2} \\ (c) & \frac{g B}{2\pi 2$$

72. A galvanometer of resistance 25μ is shunted by a 2.5μ wire. The part of the total current that flows through the [1]

9/10

galvanometer is given as:

a)
$$\frac{I}{I_0} = \frac{4}{11}$$

b) $\frac{I}{I_0} = \frac{3}{11}$
c) $\frac{I}{I_0} = \frac{2}{11}$
d) $\frac{I}{I_0} = \frac{1}{11}$

73. A beam of ions enters normally into a uniform magnetic field of 4×10^{-2} tesla with velocity of 2×10^5 m/ s If **[1]** the specific charge of the ion is 5×10^7 C/kg, then the radius of the circular path described will be

- a) 0.10 m b) 0.25 m
- c) 0.06 m d) 0.20 m

74. A rectangular coil (dimension 5 cm × 2.5 cm) with 100 turns, carrying a current of 3A in the clockwise [1] direction, is kept centred at the origin and in the X-Z plane. A magnetic field of 1 T is applied along X-axis. If the coil is tilted through 45° about Z-axis, then the torque on the coil is

- a) 0.42 N-m b) 0.27 N-m
- c) 0.38 N-m d) 0.55 N-m
- 75. The magnetic field at the centre of a current-carrying circular loop having 1 A current and number of turns one [1] will be (radius of the loop is 1 m):

a) $2\mu_0$ b) c) $\frac{\mu_0}{2}$ d) $4\mu_{d}$