

ABHINAV ACADEMY UDUPI

CET25P7 ALTERNATING CURRENT

Class 12 - Physics

Time Al	llowed: 1 hour and 30 minutes	Maximum Mark	is: 75
1.	In which of the following circuit power dissipation	on is maximum?	[1]
	a) LR or CR circuit	b) Pure capacitive circuit	
	c) Pure resistive circuit0	d) Pure inductive circuit	
2.	In a LCR-circuit, capacitance is changed from C	to 2 C. For the resonant frequency to remain unchanged, the	[1]
	inductance should be changed from L to:		
	a) L/4	b) 4 L	
	c) 2 L	d) L/2	
3.	In an ac circuit, the maximum value of voltage is	s 423 volts. Its effective voltage is	[1]
	a) 400 volt	b) 340 volt	
	c) 323 volt	d) 300 volt	
4.	In an LRC series circuit R = 300.0 Ω , X_C = 300.	0 Ω and X_L = 500.0 Ω . The average power consumed in the	[1]
	resistor is 60.0 W. Rms voltage of the source is	Y	
	a) 151 V	b) 141 V	
	c) 161 V	d) 131 V	
5.	The voltage across the terminals of an ac power s	supply varies with time according to ${ m Vcos}\omega{ m t}.$ The voltage	[1]
	amplitude is $V = 45.0 \text{ V}$. Average potential difference	rence between the two terminals of the power supply is	
	a) 35.8 V	b) 33.8 V	
	c) 37.8 V	d) 0 V	
6.	The primary and secondary coils of a transforme	r have 50 and 1500 turns respectively. If the magnetic flux ϕ	[1]
	linked with the primary coil is given by $\phi=\phi_0+4t$, where ϕ is in weber, t is time in second and ϕ_0 is a		
	constant, the output voltage across the secondary	coil is:	
	a) 90 V	b) 220 V	
	c) 120 V	d) 30 V	
7.	The phase difference between the current and the	e voltage in series LCR circuit at resonance is	[1]
	a) $\frac{\pi}{2}$	b) π	
	c) $\frac{\pi}{3}$	d) zero	
8.	· · · · · · · · · · · · · · · · · · ·	s applied over resistance of 110 Ω . The heat produced in 7 min	[1]
	is:		

	a) 11×10^3 cal	b) 25×10^3 cal	
	c) 33×10^3 cal	d) 22×10^3 cal	
9.	Inductance of an inductor whose reactance is 120 Ω a	at 80.0 Hz is	[1]
	a) 0.239 H	b) 0.209 H	
	c) 0.199 H	d) 0.219 H	
10.	If an a.c. main supply is given to be 220 V, the average	ge e.m.f. during a positive half cycle will be	[1]
	a) 240 V	b) 220 $\sqrt{2}$ V	
	c) 220 V	d) 198 V	
11.	A transformer has 500 primary turns and 10 secondar currents in the primary and secondary respectively, at	by turns. If the secondary has a resistive load of 15 Ω , the re	[1]
	a) $3.2 \times 10^{-3} \mathrm{A}$, $3.2 \times 10^{-3} \mathrm{A}$	b) 3.2×10^{-3} A, 0.16 A	
	c) 0.16 A, 3.2×10^{-3} A	d) 0.16 A, 0.16 A	
12.	An electric bulb marked 40 W and 200 V is used in a	circuit of supply voltage 100 V. Its power would be:	[1]
	a) 20 W	b) 100 W	
	c) 10 W	d) 40 W	
13.	A sinusoidal voltage of peak value 283 V and frequen	ncy 50 Hz is applied to a series LCR circuit in which $R=3$	[1]
	Ω , L = 25.48 mH, and C = 796 μ F. Power dissipated	in the circuit and the power factor are	
	a) 4800 W, 0.6	b) 4000 W, 0.4	
	c) 3800 W, 0.6	d) 4400 W, 0.6	
14.	The best material for the core of a transformer is		[1]
	a) soft iron	b) hard steel	
	c) mild steel	d) stainless steel	
15.		che cell of 1.5 V is connected across the input, what is the	[1]
	voltage across the output?		
	a) 3 V	b) 0.75 V	
	c) 1.5 V	d) 0 V	[4]
16.	Y in the second	urce is 15 A. The value of the current in the circuit $\left(\frac{1}{600}\right)$ s	[1]
	after the instant the current is zero, is	$1 > \sqrt{2}$	
	a) $\frac{15}{\sqrt{2}}$ A	b) $\frac{\sqrt{2}}{15}$ A	
	c) $15\sqrt{2}$ A	d) 8 A	
17.	A resistor of 100 Ω and a capacitor of $10\mu F$ are complete the resistor and capacitance are	nected in series to a 220 V 50 Hz ac source. Voltage across	[1]
	a) 66 V, 210 V	b) 66 V, 110 V	
	c) 60 V, 280 V	d) 56 V, 210 V	
18.	In the AC circuit, the current is expressed as $I = 100 s$	$\sin 200\pi t$. In this circuit the current rises from zero to peak	[1]

	value in time:		
	a) $\frac{1}{300}$ s	b) $\frac{1}{100}$ s	
	c) $\frac{1}{400}$ s	d) $\frac{1}{200}$ s	
19.		e filament. The wire will break if the current in it ever st root-mean-square current you can run through this bulb?	[1]
	a) 1.26 A	b) 1.46 A	
	c) 1.06 A	d) 1.56 A	
20.	A circuit has a resistance of 12 ohm and an impedance	e of 15 ohm. The power factor of the circuit will be	[1]
	a) 0 · 8	b) 1 · 125	
	c) 0 · 4	d) 1 · 25	
21.	tuned?	of capacitance 0.02 μ F. To what wavelength is this circuit	[1]
	a) $15.90 \times 10^3 \mathrm{m}$	b) 7.54×10^2 m	
	c) $7.54 \times 10^3 \mathrm{m}$	d) 4.12×10^2 m	
22.	In a series RLC circuit R = 300 Ω , L = 60 mH, C = 0 Inductive reactance $X_{\rm L}$, capacitive reactance $X_{\rm C}$ and	.50 $\mu { m F}$ applied voltage V = 50 V and ω = 10,000 rad/s. impedance Z are	[1]
	a) 600 Ω , 200 Ω and 500 Ω	b) 450 Ω , 200 Ω and 450 Ω	
	c) 550 Ω , 300 Ω and 100 Ω	d) 500 Ω , 250 Ω and 500 Ω	
23.	A transmitting station transmits radiowaves of waveler condenser of capacity 1.20 pF in the resonant circuit.	ength 360 m. Find the inductance of the coil required with a	[1]
	a) 3.07 × 10 ⁻⁸ H	b) 2.25 × 10 ⁻⁸ H	
	c) 1.25 × 10 ⁻⁸ H	d) $1.9 \times 10^{-8} \text{H}$	
24.	The coil of a choke in a circuit		[1]
	a) has high resistance to d.c. circuit.	b) increases the current	
	c) decreases the current	d) does not change the current	
25.	Reactance of a 3 H inductor at a frequency of 80.0 Hz	z is	[1]
	a) 1508 Ω	b) 1480 Ω	
	c) 1500 Ω	d) 1490 Ω	
26.	A 220 volt input is supplied to a transformer. The out	put circuit draws a current of 2.0 ampere at 440 volts. If the	[1]
	efficiency of the transformer is 80 %, the current draw	vn by the primary windings of the transformer is:	
	a) 2.5 ampere	b) 5.0 ampere	
	c) 2.8 ampere	d) 3.6 ampere	
27.	An ac voltage $v = v_0 \sin \omega t$ is applied to a series com-	bination of a resistor R and an element X. The	[1]
	instantaneous current in the circuit is I = I $_0$ sin $\left(\omega t + \frac{1}{2}\right)$	$(\frac{\pi}{4})$. Then which of the following is correct?	
	a) X is an inductor and $X_L = \sqrt{2}R$	b) X is an inductor and $X_L = R$	

	c) X is a capacitor and $X_C = \sqrt{2} R$	d) X is a capacitor and $X_C = R$	
28.	An inductor with $L=9.50\ mH$ is connected across a the source that results in a current amplitude of 3.90	n ac source that has voltage amplitude 45.0 V. Frequency of A is	[1]
	a) 180 Hz	b) 129 Hz	
	c) 193 Hz	d) 150 Hz	
29.	Series LCR circuit is connected to a variable frequer Impedance of the circuit and the amplitude of current	acy 230 V source where L = 5.0 H, C = 80 μ F, R = 40 Ω . It at the resonating frequency are	[1]
	a) 50 Ω , 8.1 A	b) 40 Ω, 5.75 A	
	c) 80 Ω , 3.9 A	d) 25 Ω, 5.4 A	
30.	An inductor, a capacitor and a resistor are connected the source is decreased gradually, the reactance of:	in series across an ac source of voltage. If the frequency of	[1]
	 a) both the inductor and the capacitor decreases. 	b) inductor increases and the capacitor decreases.	
	c) inductor decreases and the capacitor	d) both the inductor and the capacitor	
	increases.	increases.	
31.	In an LRC series circuit R = 300.0 Ω , X_C = 300.0 Ω	and X_L = 500.0 Ω . The average power consumed in the	[1]
	resistor is 60.0 W. What is the power factor of the ci	rcuit?	
	a) 0.881	b) 0.831	
	c) 0.931	d) 0.911	
32.		nd its secondary has 500 turns. If the primary is connected	[1]
	to a.c. supply of 20 V-50 Hz, then secondary will have	ve an	
	a) 200 V - 50 Hz	b) 2 V - 5 Hz	
	c) 200 V - 500 Hz	d) 2 V - 50 Hz	
33.	The primary winding of a transformer has 500 turns, connected to an a.c. supply 20 V-50 Hz. The secondary	whereas its secondary has 5,000 turns. The primary is ary will have an output of:	[1]
	a) 200 V - 50 Hz	b) 200 V - 500 Hz	
	c) 2 V - 50 Hz	d) 2 V - 5 Hz	
34.	A small signal voltage $V(t) = V_0 \sin t$ is applied acro	oss an ideal capacitor C.	[1]
	a) Current I(t) lags voltage V(t) by 90°	b) Current I(t) leads voltage V(t) by 180°.	
	c) Over a full cycle the capacitor C does not consume any energy from the voltage source.	d) Current I(t) is in phase with voltage V(t)	
35.	The phase difference between the alternating current constituent of the circuit?	and emf is $\frac{\pi}{2}$. Which of the following cannot be the	[1]
	a) L alone	b) C alone	
	c) L-C	d) R, L	

36. If C and R denote capacitance and resistance, then dimensions of CF		mensions of CR are	[1]
	a) $[M^0LT^0A^1]$	b) [MLT ⁰ A ²]	
	c) $[M^0L^0TA^0]$	d) [ML ⁰ TA ⁻²]	
37.	An inductor 20 mH, a capacitor 100 μ F and a resisto 10sin 314t. The power loss in the circuit is:	r 50Ω are connected in series across a source of emf, V =	[1]
	a) 1.13 W	b) 0.43 W	
	c) 0.79 W	d) 2.74 W	
38.	The average power dissipation in a pure capacitor in	ac circuit is:	[1]
	a) CV^2	b) _{2CV} ²	
	c) Zero	d) $\frac{1}{2}CV^2$	
39.	Which of the following quantities remain constant in	a step down transformer?	[1]
	a) Current	b) Charge	
	c) Power	d) Voltage	
40.	A 15 Ω resistor, an 80 mH inductor and a capacitor σ	of capacitance C are connected in series with a 50 Hz ac	[1]
	source. If the source voltage and current in the circui	t are in phase, then the value of capacitance is	
	a) $100~\mu\mathrm{F}$	b) 127 μF	
	c) 160 μ F	d) 142 μF	
41.		V to a step-down transformer with its primary windings	[1]
	having 4000 turns. Number of turns in the secondary	in order to get output power at 230 V is	
	a) 325	b) 380	
	c) 425	d) 400	
42.		-factor) 0.4. If R = 2 k Ω , C = 0.1 μ F, then the value of	[1]
	inductance is		
	a) 0.1 H	b) 2 H	
40	c) 5 H	d) 0.064 H	F41
43.	What are the dimensions of impedance?		[1]
	a) _{ML³T⁻³I⁻² c) _{ML²T⁻³I⁻²}}	b) _M -1 _L 2 _T 3 _I 2	
	c) $ML^2T^{-3}I^{-2}$	d) $M^{-1}L^3T^3I^2$	
44.	In a series LCR circuit, the voltage across the resistant	-	[1]
	capacitance is short-circuited the voltage across the i	nductance will be	
	a) $\frac{10}{\sqrt{2}}$ V	b) 20 V	
	c) 10 V	d) $10\sqrt{2}$ V	
45.	The power factor of an a.c. circuit having resistance velocity ω is:	R and inductance L (connected in series) and an angular	[1]
	a) R /(R ² + ω^2 L ²) ^{1/2}	b) R / ω L	

	c) R /(R^2 - $\omega^2 L^2$) ^{1/2}	d) ω L / R	
46.	If the current in a series LCR circuit is maximum, the	en ω will be:	[1]
	a) as large as possible	b) \sqrt{LC}	
	c) \sqrt{LCR}	d) equal to natural frequency of LCR system	
47.	Domestic power supply in India is		[1]
	a) 110 V, 60 Hz	b) 220 V, 50 Hz	
	c) 416 V, 60 Hz	d) 24 V DC	
48.	A transformer works on the principle of	\	[1]
	a) inverter	b) converter	
	c) self induction	d) mutual induction	
49.	The best material for the core of a transformer is:		[1]
	a) soft iron	b) mild steel	
	c) hard steel	d) stainless steel	
50.	Quantity that remains unchanged in a transformer is		[1]
	a) voltage	b) Ampere	
	c) frequency	d) current	
51.	A transformer is used to light a 100 W and 110 V lan	np from a 220 V mains. If the main current is 0.5 A, the	[1]
	efficiency of the transformer is approximate:	V.	
	a) 30 %	b) 10 %	
	c) 90 %	d) 50 %	
52.	You have a 200.0 Ω resistor, a 0.400-H inductor, 5.0	$\mu { m F}$ a capacitor, and a variable frequency ac source with an	[1]
		ogether to form a series circuit. Current amplitude at an	
	angular frequency of 400 rad/s is		
	a) 7.61mA	b) 8.61mA	
	c) 8.91mA	d) 7.91mA	
53.	The core of a transformer is laminated to reduce the e	effect of	[1]
	a) flux leakage	b) hysteresis loss	
	c) eddy current	d) copper loss	
54.	A 200 ohm resistor is connected in series with a $5\mu F$	capacitor. The voltage across the resistor is V_{R} = 1.20	[1]
	cos(2500t). Capacitive reactance is		
	a) 70 Ω	b) 80 Ω	
	c) 60 Ω	d) 90 Ω	
55.		ng doorbell has 2000 turns of fine wire and the secondary 110 V A.C. source will deliver at its secondary a potential	[1]

	c) 5.5 V	d) 55 V	
56.		apacitor in series is connected to a 230 V, 50 Hz supply. wers transferred to the inductor and to the capacitor are	[1]
	a) 10 W, 10 W	b) 0 W, 0 W	
	c) 10 W, 20 W	d) 20 W, 10 W	
57.	The reactance of a capacitance at 50 Hz is 5 Ω . If the	frequency is increased to 100 Hz, the new reactance is	[1]
	a) $10~\Omega$	b) 2.5 Ω	
	c) 125 Ω	d) 5 Ω	
58.		quency. As the frequency of the source is increased, the he following combinations of elements is likely to comprise	[1]
	a) L and R	b) L, C and R	
	c) L and C	d) R and C	
59.		equency, a 115.0 Ω resistor, a 1.25 μF capacitor, and a 4.50 ular frequency of the ac source is adjusted to the resonant	[1]
	a) 135.0 Ω	b) 115.0 Ω	
	c) 145.0 Ω	d) 125.0 Ω	
60.	Which quantity is increased in a step-down transform	ner?	[1]
	a) Current	b) Power	
	c) Frequency	d) Voltage	
61.	In a pure inductive circuit with a.c. source, the current	nt lags behind emf by phase angle of	[1]
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{4}$	
	c) 2π	d) π	
62.		tor. A voltage of amplitude 170 V and frequency 60 Hz mplitude of 0.850 A through the capacitor. Capacitance	[1]
	a) 17.8 $\mu { m F}$	b) 13.3 $\mu \mathrm{F}$	
	c) 15.3 $\mu \mathrm{F}$	d) 23.4 $\mu \mathrm{F}$	
63.	A condenser of 250 μF is connected in parallel to a c 20 Ω . Determine the resonant frequency.	oil of inductance 0.16 mH, while its effective resistance is	[1]
	a) $8 \times 10^5 \mathrm{Hz}$	b) $9 \times 10 \mathrm{Hz}$	
	c) $_{16} \times 10^7 \mathrm{Hz}$	d) $9 \times 10^4 Hz$	
64.	A 100 mH coil carries a current of 1 A. Energy stored	d in the form of the magnetic field is	[1]

b) 11 V

a) 220 V

	a) 1 J	b) 0.1 J	
	c) 0.5 J	d) 0.05 J	
65.	At resonance, in a series LCR circuit, which relation	does not hold?	[1]
	a) $X_L=X_C$	b) $L\omega=rac{1}{C\omega}$	
	c) $\omega=rac{1}{LC}$	d) $\omega=rac{1}{\sqrt{LC}}$	
66.	An inductive circuit have zero resistance. When ac vo	oltage is applied across this circuit, then the current lags	[1]
	behind the applied voltage by an angle		
	a) 90°	p) 0 _o	
	c) ₄₅ °	d) 30°	
67.	The voltage across a resistor, an inductor, and a capac	citor connected in series to an ac source are 20 V, 15 V and	[1]
	30 V respectively. The resultant voltage in the circuit	is	
	a) 5 V	b) 25 V	
	c) 20 V	d) 65 V	
68.	-	lamp from a 220 volt mains. If the main current is 0.5	[1]
	ampere, the efficiency of the transformer is approxim		
	a) 90%	b) 30%	
	c) 20%	d) 10%	
69.		s which an alternating potential $E = E_0 \sin \omega t$ is applied.	[1]
	The power consumed in the circuit is	y	
	a) $E_0 I_0 / 2$	b) $E_0 I_0$	
	c) E	d) zero	
70.		a load current of 2 ampere. The ratio of the primary and	[1]
	secondary windings is 1 : 25. The current in the prima	ary is:	
	a) 15 amp	b) 25 amp	
	c) 12.5 amp	d) 50 amp	
71.	The impedance of a series LCR circuit is		[1]
	a) $R + X_L + X_C$	b) $\sqrt{rac{1}{{ m X}_{ m C}^2}+rac{1}{{ m X}_{ m L}^2}}+{ m R}^2$	
	a) R + ${ m X_L}$ + ${ m X_C}$ c) $\sqrt{X_L^3-X_C^2+R^2}$	b) $\sqrt{rac{1}{ ext{X}_{ ext{C}}^2} + rac{1}{ ext{X}_{ ext{L}}^2} + ext{R}^2}$ d) $\sqrt{R^2 + (X_L - X_C)^2}$	
72.		sec and its amplitude is 120 V. Then its rms value will be:	[1]
	a) 84.8 V	b) 42.4 V	
	c) 75.5 V	d) 56.5 V	
73.	In a series LCR circuit, the capacitance is changed from	om C to $\frac{C}{4}$. For the resonant frequency to remain	[1]
	unchanged, the inductance should be changed from L	to nL, where n is:	
	a) 2	b) $\frac{1}{2}$	

	4
c) 4	d) $\frac{1}{4}$
-) ·	-/ 1

74. The transformer is a device that is used to change the magnitude of:

a) A.C. voltage

b) D.C. voltage

c) Both A.C. voltage and D.C. voltage

d) D.C. current

75. An LRC series circuit has phase angle 31.5°. The voltage amplitude of the source is 90.0 V. Voltage amplitude [1] across the resistor is

a) 68.7 V

b) 76.7 V

c) 74.7 V

d) 70.7 V

[1]