

ABHINAV ACADEMY

UDUPI

CET25P8 CET25P7 ALTERNATING CURRENT

Class 12 - Physics

Time Allowed: 1 hour and 30 minutes

Maximum Marks: 75

An em wave is propagating in a medium with a velocity $\vec{V} = V\hat{i}$. The instantaneous oscillating electric field of 1. [1] this em wave is along +y axis. Then the direction of the oscillating magnetic field of the em wave will be along: a) -y direction b) -x direction c) +z direction d) -z direction 2. The ratio of the amplitude of magnetic field to the amplitude of electric field for an electromagnetic wave [1] propagating in a vacuum is equal to a) the speed of light in vacuum b) the ratio of magnetic permeability to the electric susceptibility of vacuum c) reciprocal of speed of light in vacuum d) unity A parallel plate capacitor is charged by a current of 2×10^{-7} A displaced between the plates of the capacitor. [1] 3. When the discharge of the capacitor takes place through a resistance, the rate of change of electric flux (in Wb/s) will be: b) 3.26×10^{6} a) 6.26×10^9 c) 4.26×10^8 d) 2.26×10^4 4. Radio station WCCO in Minneapolis broadcasts at a frequency of 830 kHz. Wavelength and angular wave [1] number are a) 361 m, 0.0174 /m b) 381 m, 0.89 rad/m c) 391 m, 0.48 rad/m d) 371 m, 0.0245 rad/m 5. Electromagnetic waves travel in a medium that has relative permeability 1.3 and relative permittivity 2.14. Then [1] the speed of the electromagnetic wave in the medium will be: a) 1.8×10^2 m/s b) $1.8 \times 10^{6} \text{ m/s}$ c) 1.8×10^8 m/s d) 1.8×10^4 m/s 6. The temperature of an object that emits electromagnetic radiation must be [1] a) high enough for it to glow b) higher than 0 K c) higher than that of its surroundings d) higher than 0°C 7. Medical x-rays are taken with electromagnetic waves having a wavelength of around 0.10 nm. What are the [1] frequency and period of such waves? a) $20.4 \times 10^{15} \mathrm{kHz}, 5.7 \times 10^{-17} \mathrm{s}$ b) $3 \times 10^{15} \mathrm{kHz}$, $3.3 \times 10^{-17} \mathrm{s}$

	c) $4.2 imes 10^{15} m kHz, 2.8 imes 10^{-17} m s$	d) $37.8 imes 10^{15} m kHz, 5.6 imes 10^{-17} m s$	
8.	The velocity of light is equal to		[1]
	a) $\frac{\sqrt{\varepsilon_0}}{\mu_0}$	b) $\sqrt{\varepsilon_0\mu_0}$	
	c) $\frac{\varepsilon_0}{\mu_0}$	d) $\frac{1}{\sqrt{\varepsilon_0\mu_0}}$	
9.	Out of the following options which one can be used t	o produce a propagating electromagnetic wave?	[1]
	a) An accelerating charge	b) A charge moving at a constant velocity	
	c) A chargeless particle	d) A stationary charge	
10.	The amplitude of the magnetic field part of a harmon	ic electromagnetic wave in vacuum is $B_0 = 510$ nT.	[1]
	Amplitude of the electric field part of the wave is		
	a) 163 N/C	b) 158 N/C	
	c) 153 N/C	d) 173 N/C	
11.	An electromagnetic wave is produced by a charge		[1]
	a) moving with a constant speed parallel to a	b) moving with an acceleration	
	magnetic field		
	c) moving with a constant velocity	d) at rest	
12.	According to Maxwell's hypothesis, a changing electronic electroni	ric field gives rise to	[1]
	a) electric current	b) pressure gradient	
	c) an e.m.f.	d) magnetic field	
13.		s from vacuum into a dielectric medium with permittivity $arepsilon$	[1]
	= 4. Then,		
	a) wavelength and frequency both remain unchanged	b) wavelength is doubled and the frequency remain unchanged	
	c) wavelength is doubled and the frequency	d) wavelength is halved and the frequency	
	becomes half	remains unchanged	
14.	The frequency of γ -rays, X-rays and ultraviolet rays	are a, b and c respectively. Then,	[1]
	a) a < b < c	b) a > b > c	
	c) a = b = c	d) $a > c > b$	
15.	A charged particle oscillates about its mean equilibriu electromagnetic waves produced by the oscillator is	um position with a frequency of $10^9\mathrm{Hz}$. Frequency of the	[1]
	a) 600 MHz	b) 400 MHz	
	c) $10^9 Hz$	d) 200 MHz	
16.	These are three wavelengths 10 ⁷ m, 10 ⁻¹⁰ m, 10 ⁻⁷ m. F	ind their respective names.	[1]
	a) Visible rays, γ -rays, X-rays	b) X-Rays, Visible rays, Radiowaves	
	c) Radiowaves, X-rays, Visible rays	d) X-rays, γ -rays, Visible rays	
17.	The velocity of light in vacuum can be changed by ch	nanging:	[1]

	a) amplitude	b) wavelength	
	c) None of these	d) frequency	
18.	Transverse nature of electromagnetic waves is evident	by	[1]
	a) Polarization	b) Reflection	
	c) Diffraction	d) Interference	
19.	The electromagnetic radiations used for water purifica	tion and eye surgery is	[1]
	a) None of these	b) Microwave	
	c) Infrared	d) X-rays	
20.	The intensity of a plane electromagnetic wave is propo	ortional to	[1]
	a) Electric field squared	b) Electric field cubed	
	c) 1/ Electric field squared	d) Electric field	
21.		$=E_0 \hat{i} \cos(kz-\omega t)$ is incident normally on a perfectly	[1]
		erial of the wall is optically inactive, the reflected wave	
	will be given as		
	a) $E_r = E_0 \hat{i} \sin(kz-\omega t)$	b) $E_r = E_0 \hat{i} \cos(kz+\omega t)$ d) $E_r = -E_0 \hat{i} \cos(kz-\omega t)$	
			[4]
22.		a perfectly reflecting surface at normal incidence. If the	[1]
	surface area is 15 cm ² , the average force exerted on th	X	
	a) 3.0×10^{-6} N	b) 2.50×10^{-6} N d) 1.20×10^{-6} N	
	c) 1.25×10^{-6} N	d) $1.20 \times 10^{-6} \mathrm{N}$	
23.	Which one of the following electromagnetic radiation	has the least wavelength?	[1]
	a) Microwaves	b) Gamma rays	
	c) X-rays	d) Visible light	
24.	The energy of a photon of wavelength 663 nm is		[1]
	a) 2.0×10^{-20} J	b) $5.18 \times 10^{-19} \text{J}$	
	c) 3.0×10^{-19} J	d) $6.64 \times 10^{-20} \text{ J}$	
25.	A proton and an alpha particle have the same kinetic e	nergy. The ratio of de Broglie wavelengths associated with	[1]
	the proton to that with the alpha particle is:		
	a) 1	b) $\frac{1}{2}$	
	c) 2	d) $2\sqrt{2}$	
26.	The frequency of electromagnetic wave, which is best	suited to observe a particle of radius 3 \times 10 ⁻⁴ cm, is of	[1]
	the order of		

- a) $_{10^{15}}$ b) $_{10^{12}}$
- c) 10¹³ d) 10¹⁴

27.	If, $\lambda_v, \ \lambda_x$ and λ_m represent the wavelengths of visible space then,	le light, x-rays and microwaves respectively in the free	[1]
	a) $\lambda_m > \lambda_v > \lambda_x$	b) $\lambda_v > \lambda_x > \lambda_m$	
	c) $\lambda_m > \lambda_x > \lambda_v$	d) $\lambda_v > \lambda_m > \lambda_x$	
28.	Plane electromagnetic wave travels in vacuum along wavelength is	z-direction. If the frequency of the wave is 30 MHz, its	[1]
	a) 10 m	b) 13 m	
	c) 11 m	d) 12 m	
29.	What physical quantity is the same for X-rays of wav waves of wavelength 500m?	elength 10^{-10} m, red light of wavelength 6800 $\stackrel{0}{A}$ and radio	[1]
	a) speed	b) phase	
	c) frequency	d) energy	
30.	Electromagnetic waves of wavelength of the order of laboratory by:	a few meters were first produced and detected in the	[1]
	a) H.R. Hertz	b) J.C. Bose	
	c) J.C. Maxwell	d) G. Marconi	
31.	The correct option, if speeds of gamma rays, X-rays a	nd microwaves are $\boldsymbol{v}_g,$ \boldsymbol{u}_x and \boldsymbol{v}_m respectively will be:	[1]
	a) $v_g > v_x > v_m$	b) $v_g > v_x > v_m$	
	c) $v_g < v_x < v_m$	b) $v_g > v_x > v_m$ d) $v_g = v_x = v_m$	
32.	The r.m.s. value of the electric field of the light comin density of the electromagnetic wave is:	ng from the sun is 720 $\rm NC^{-1}$. The average total energy	[1]
	a) $6.37 imes 10^{-9} Jm^{-3}$	b) $1.35 imes 10^{-12} Jm^{-3}$	
	c) $3.3 imes 10^{-3} Jm^{-3}$	d) $4.58 imes 10^{-6} Jm^{-3}$	
33.	Solar radiation is		[1]
	a) latitudinal electromagnetic wave	b) none of these	
	c) transverse electromagnetic wave	d) longitudinal electromagnetic wave	
34.	In a travelling plane electromagnetic wave, which of	the following have zero average value?	[1]
	a) Magnetic energy and magnetic field	b) Electric energy and electric field	
	c) Magnetic field and electric field	d) Magnetic energy and electric energy	
35.	7.5 MHz to 12 MHz band corresponds to wavelength	band of	[1]
	a) 7.5 m - 12 m	b) 25 m - 40 m	
	c) 50 m - 75 m	d) 12 m - 7.5 m	
36.	A carbon dioxide laser emits a sinusoidal electromage direction. The wavelength is 10.6µm and the field is p		[1]

36. A carbon dioxide laser emits a sinusoidal electromagnetic wave that travels in vacuum in the negative x- [1] direction. The wavelength is 10.6 μ m and the field is parallel to the z-axis, with $E_{max} = 1.5$ MV/m. Vector equation for E as function of time and position is

	a) $E(x, t) = -E_{max} \cos \theta$	b) $E(y, t) = E_{max} \cos \theta$	
	$\left(5.93 imes 10^5 \; x + 1.78 imes 10^{14} \; t ight)$	$\left(5.93 imes 10^5y-1.78 imes 10^{14}t ight)$	
	c) $E(x, t) = E_{max} \cos \theta$	d) $E(y, t) = E_{max} \cos \theta$	
	$\left(5.93 imes 10^5 \; x + 1.78 imes 10^{14} \; t ight)$	$\left(5.93 imes 10^5y + 1.78 imes 10^{14}t ight)$	
37.	There are three wavelengths: 10 ⁻⁸ m, 10 ⁻² m, 10 ⁸ m	. Their respective names are:	[1]
	a) ultraviolet rays, microwaves, radiowaves	b) visible rays, γ -rays, ultraviolet rays	
	c) X-rays, visible rays, radiowaves	d) radiowaves, X-rays, microwaves.	
38.	If a source is transmitting electromagnetic waves of electromagnetic wave transmitted from the source is		[1]
	a) 18.8 m	b) 58 m	
	c) 35.6 m	d) 42.8 m	
39.	Characteristic X-rays are produced due to		[1]
	a) transfer of momentum in collisiori of electrons with target atoms	b) transition of electrons from higher to lower electronic orbits of an atom	
	c) heating of the target	d) transfer of energy in collision of electrons with atoms in the target	
40.	Electromagnetic waves travelling in a medium has s relative permittivity of medium must be	speed 2 \times 10 ⁸ m/s. If the relative permeability is 1, then the	[1]
	a) 2.25	b) 1.5	
	c) 2	d) 2.5	
41.	An EM wave radiates outwards from a dipole anten	na, with \mathbf{E}_0 as the amplitude of its electric field vector. The	[1]
	electric field E_{0} which transports significant energy	from the source falls off as	
	a) $\frac{1}{r}$	b) $\frac{1}{r^3}$	
	c) remains constant	d) $\frac{1}{r^2}$	
42.	The frequencies of X-rays, γ -rays and ultra violet ra	ays are respectively a, b and c. Then	[1]
	a) a > b, b > c	b) a < b, b < c	
	c) a > b, b < c	d) a < b, b > c	
43.	The electromagnetic radiations used to kill germs in	water purifiers are called:	[1]
	a) Ultraviolet rays	b) Infrared waves	
	c) X-rays	d) Gamma rays	
44.	X-rays are produced when an element of high atomi	ic weight is bombarded by high energy	[1]
	a) electrons	b) neutrons	
	c) protons	d) photons	
45.		s of charged capacitor is? (q = charge on the	[1]
	capacitor and $A =$ area of the capacitor plate)		

	$a) q^2$	p	
	a) $\frac{q^2}{2\epsilon_0 A}$	b) $\frac{q}{2\epsilon_0 A^2}$	
	$C) \frac{q^2}{2\epsilon_0 A^2}$	d) $\frac{q}{2\epsilon_0 A}$	
46.	In electromagnetic waves, the phase difference betwee	een magnetic and electric field vectors is	[1]
	a) $\frac{\pi}{4}$	b) zero	
	c) $\frac{\pi}{2}$	d) <i>π</i>	
47.	For a wave propagating in a medium, identify the pro	operty that is independent of the others.	[1]
	a) wavelength	b) all these depend on each other	
	c) velocity	d) frequency	
48.	The ozone layer blocks the radiation of wavelength		[1]
	a) more than 3 \times 10 ⁻⁷ m	b) equal to 3×10^{-7} m	
	c) all of these	d) less than 3×10^{-7} m	
49.	The amplitude of the sinusoidally oscillating electric	field of the plane wave is 60 V/m. Then the amplitude of	[1]
	the magnetic field is:		
	a) $2 imes 10^{-7}T$	b) $6 imes 10^{-7}T$ d) $2 imes 10^{7}T$	
	c) $6 imes 10^7 T$		
50.	Which radiations are used in the treatment of muscle	s ache?	[1]
	a) ultraviolet	b) microwave	
	c) infrared	d) X-rays	
51.	Optical and radio telescopes are built on the ground,	but X-ray Astronomy is possible only from satellites	[1]
	orbiting the earth because		
	a) Atmosphere reflects X-rays away from earth	 b) Atmosphere reflects X-rays horizontally so they don't reach the earth 	
	c) Atmosphere absorbs X-rays, while visible	d) Satellites orbiting the earth make use of	
	and radio waves can penetrate it.	interstellar effects	
52.	A welder wears special glasses to protect his eyes mo		[1]
	a) ultraviolet rays	b) very intense visible light	
-0	c) infrared radiation	d) microwaves	F 4 3
53.	Light from the star Sirius takes 8.61 years to reach th kilometers?	e earth. What is the distance from earth to Sirius in	[1]
	a) 7.85 $ imes 10^{13}$ km	b) 8.05 $ imes 10^{13}$ km	
	c) 7.95 $ imes 10^{13}$ km	d) 8.15 $ imes 10^{13}$ km	
54.	Name the electromagnetic waves also known as heat	t waves.	[1]
	a) Microwaves	b) X-rays	
	c) Radio waves	d) Infrared waves	
55.	Electromagnetic wave having frequency $5 imes 10^{11}~{ m H}$	z is	[1]

	a) X-rays	b) Ultraviolet wave	
	c) Radio wave	d) Microwave	
56.	The electric field associated with an e.m. wave in vac	uum is given by $ec{E}=\hat{i}40\cosig(\kappa z-6 imes10^8tig)$, where E,	[1]
	z and t are in volt/m, metre and seconds respectively.	The value of wave vector κ is	
	a) _{2 m} -1	b) _{3 m} -1	
	c) _{6 m} -1	d) _{0.5 m} -1	
57.	In vacuum, the physical property which remains same	for microwave of wavelength 1 mm and UV radiation	[1]
	$1600\overset{o}{A}$ is	4	
	a) Speed	b) Frequency	
	c) Magnet	d) Wavelength	
58.	Which wavelength of the sun is used finally as electric	c energy?	[1]
	a) Radio waves	b) Visible light	
	c) Infrared waves	d) Microwaves	
59.	About 5% of the power of a 100 W light bulb is conve	erted to visible radiation. What is the average intensity of	[1]
	visible radiation at a distance of 1m from the bulb and		
	a) 0.45 W/m ² , 0.004 W/m ²	b) 0.5 W/m ² , 0.004 W/m ²	
	c) 0.4 W/m^2 , 0.004 W/m^2	d) 0.55 W/m ² , 0.004 W/m ²	
60.	Which of the following physical quantities remain the	same for X-ray, red light and radio waves when travelling	[1]
	through a medium?		
	a) Momentum	b) Wavelength	
	c) Speed	d) Frequency	
61.		are connected in series across a 220 V source. When the	[1]
	capacitor is 50% charged, the peak value of the displa	cement current is:	
	a) 4.4 A	b) $11\sqrt{2}$ A	
	c) 2.2 A	d) 11 A	
62.	Choose the correct option related to wavelengths (λ)	of different parts of electromagnetic spectrum.	[1]
	a) $\lambda_{ m radio\ wave} > \lambda_{ m micro\ waves} > \lambda_{ m visible} > \lambda_{ m x.rays}$	b) $\lambda_{ ext{x-rays}} < \lambda_{ ext{micro waves}} < \lambda_{ ext{radio waves}} < \lambda_{ ext{visible}}$	
	c) $\lambda_{ m visible}>\lambda_{ m x-rays}>\lambda_{ m radiowaves}>\lambda_{ m microwaves}$, we d) $\lambda_{ m visible}<\lambda_{ m micro\;waves}<\lambda_{ m radio\;waves}<\lambda_{ m x-rays}$	
63.	Displacement current exists only when		[1]
	a) magnetic field is not changing	b) electric field is not changing	
	c) magnetic field is changing	d) electric field is changing	
64.	For a medium with permittivity ${\cal E}$ and permeability μ	, the velocity of light is given by:	[1]
	a) $\sqrt{\frac{\varepsilon}{\mu}}$	b) $\frac{1}{\sqrt{\mu\varepsilon}}$	
	c) $\sqrt{\mu\varepsilon}$	d) $\sqrt{\frac{\mu}{\varepsilon}}$	
		V č	

65.	Electromagnetic waves used as a diagnostic tool in medicine are		[1]
	a) ultrasonic waves	b) ultraviolet rays	
	c) X-rays	d) infrared radiation	
66.	The frequency of red light with a wavelength of 4.2	$ imes 10^{-7}$ m is	[1]
	a) 7.14 $ imes 10^{14} \mathrm{Hz}$	b) 7.34 $ imes 10^{14}$ Hz	
	c) 7.64 $ imes 10^{14} \mathrm{Hz}$	d) 7.94 $ imes 10^{14}$ Hz	
67.	The energy of the e.m. waves is of the order of 15 ke	eV. To which part of the spectrum does it belong?	[1]
	a) Ultraviolet rays	b) X-rays	
	c) γ -rays	d) Infrared rays	
68.	The conduction current is the same as the displacem	ent current when the source is:	[1]
	a) neither for d.c. nor for a.c.	b) a.c. only	
	c) both a.c. and d.c.	d) d.c. only	
69.	A radiation of energy E falls normally on a perfectly	reflecting surface. The momentum transferred to the	[1]
	surface (c = velocity of light) is		
	a) $\frac{2E}{c}$	b) $\frac{2E}{c^2}$	
	c) $\frac{E}{c^2}$	d) $\frac{E}{c}$	
70.	An electromagnetic wave radiates outwards from a c	lipole antenna, with E_0 as the amplitude of its electric field	[1]
	vector. The electric field E_0 which transports signified	cant energy from the source falls off as	
	a) $\frac{1}{r^3}$	b) remains constant	
	c) $\frac{1}{r^2}$	d) $\frac{1}{r}$	
71.	If $v_{\text{s}}, v_{\text{x}}$ and v_{m} are the speeds of gamma rays, X-ray	ys and microwaves respectively in vacuum, then	[1]
	a) $v_s > v_x > v_m$	b) $v_s = v_x = v_m$	
	c) $v_{s} < v_{x} < v_{m}$	d) $v_{s} > v_{x} > v_{m}$	
72.		up a food item containing water molecules most efficiently	[1]
	is		
	a) the frequency of the microwaves must	b) the frequency of the microwaves has no	
	match the resonant frequency of the water	relation with the natural frequency of water	
	molecules	molecules	
	c) infrared waves produce heating in a	d) microwaves are heat waves, so always	
73.	microwave oven The electromagnetic waves used in radar systems ar	produce heating	[1]
75.			[1]
	a) X-rays	b) Infrared waves	
71	c) Microwaves	d) Ultraviolet rays scillates sinusoidally at a frequency of $2.0 imes10^{10}$ Hz and	[1]
74.	In a plane electromagnetic wave, the electric field of amplitude 48 V m ^{-1} . Wavelength of the wave and a		[1]

amplitude 48 V ${
m m}^{-1}.$ Wavelength of the wave and amplitude of the oscillating magnetic field are

a) 1.8 $ imes 10^{-2}$ m, 1.8 $ imes 10^{-7}$ T	b) 2.5×10^{-2} m, 2.6×10^{-7} T
c) 1.5×10^{-2} m, 1.6×10^{-7} T	d) 2.2 $ imes 10^{-2}$ m, 1.6 $ imes 10^{-7}$ T

75. Using the formula $\lambda_{\rm m}$ T = 0.29 cmK, the characteristic temperature range obtained for $\lambda_{\rm m} = 5 \times 10^{-7}$ m is [1]

a) 5800 K	b) 7000 K
c) 6500 K	d) 7500 K