Udupi

CET25P9 RAY OPTICS AND OPTICAL INSTRUMENTS

Class 12 - Physics

Time Al	lowed: 1 hour and 30 minutes	Maximum Marks	s: 75
1.	When a ray of light enters a glass slab from air,		[1]
	a) its wavelength decreases	b) neither wavelength nor frequency changes	
	c) its wavelength increases	d) its frequency increases	
2.	If the focal length of objective lens is increased the	en magnifying power of	[1]
	a) Microscope will decrease but that of telescope will increase.	b) Microscope and telescope both will decrease.	
	c) Microscope and telescope both will increase.	d) Microscope will increase but that of telescope decrease.	
3.	To print a photograph from a negative, the time of What exposure time is required if the lamp is place	exposure to light from a lamp placed 60 cm away is 2.5 s. ed 1.2 m away?	[1]
	a) 5 s	b) 10 s	
	c) 15 s	d) 20 s	
4.	Which of the following pairs of media has the lease	t value of critical angle?	[1]
	a) Glass to air	b) Glass to water	
	c) Diamond to water	d) Diamond to air	
5.	The focal length (f) of spherical mirror of radius cu	irvature R is:	[1]
	a) $\frac{3}{2R}$	b) 2R	
	c) R	d) $\frac{R}{2}$	
6.	A lamp and a screen are set up 100 cm apart and a	convex lens is placed between them. The two positions of the	[1]
	lens forming real images on the screen are 40 cm a	part. What is the focal length of the lens?	
	a) 15 cm	b) 21 cm	
	c) 18 cm	d) 12 cm	
7.	According to Cartesian sign convention, distances	measured in the same direction as the	[1]
	a) incident light is taken as negative	b) reflected/refracted ray is taken as negative	
	c) incident light is taken as positive	d) reflected/refracted ray is taken as positive	
8.	An equi-convex crown glass lens has a focal length	n 20 cm for violet rays. Here $\mu_{ m v}=1.5~\&~\mu_{ m r}=1.47$. Its	[1]
	tocal length for red rays is		
	a) 24.85 cm	b) 20.82 cm	
	c) 21.28 cm	d) 22.85 cm	
9.	A convex lens is dipped in a liquid whose refractiv	e index is equal to the refractive index of the lens. Then its	[1]

focal length will:

	a) Become infinite	b) Become zero	
	c) Reduce	d) Remain same as in air	
10.	A convex crown glass lens ($\mu_{ m g}$ = 1.5) has a focal leng	th of 8 cm when placed in air. What is the focal length of	[1]
	the lens when it is immersed in water ($\mu_w=4/3)$?		
	a) 32 cm	b) 16 cm	
	c) 8 cm	d) 4 cm	
11.	A telescope has an objective of focal length 100 cm a magnifying power of the telescope when it is in norm	nd an eye-piece of focal length 5 cm. What is the al adjustment?	[1]
	a) 20.0	b) 2.0	
	c) 0.2	d) 200	
12.	If an object is placed unsymmetrically between two p images formed is	lane mirrors inclined at 70°, then the total number of	[1]
	a) 1	b) 5	
	c) 4	d) 3	
13.	The wavelength of light in air is 6000 $\stackrel{o}{ m A}$ and in mediut that medium with respect to air is	im its value is 4000 $\overset{\mathrm{o}}{\mathrm{A}}$. It means that the refractive index of	[1]
	a) 1.2	b) 2.4	
	c) 0.66	d) 1.5	
14.	A biconvex lens of glass having refractive index 1.47	is immersed in a liquid. It becomes invisible and behaves	[1]
	as a plane glass plate. The refractive index of the liqu	id is	
	a) 1.33	b) 1.62	
	c) 1.51	d) 1.47	
15.	A ray of light incident at an angle $ heta$ on a refracting fa	ce of a prism emerges from the other face normally. If the	[1]
	angle of the prism is 5° and the prism is made of a ma	aterial of refractive index 1.5, the angle of incidence is	
	a) 7.5°	b) 2.5°	
	c) 5°	d) 15°	
16.	Magnifying power of a microscope depends on		[1]
	a) focal length of eyepiece and objective.	b) colour of light.	
	c) focal length of objective and color of light.	d) focal length of eyepiece and color of light.	
17.	Magnifying power of a compound microscope is high	if	[1]
	a) the objective has a short focal length and the	b) the objective has a long focal length and	
	eye-piece has a long focal	eye-piece has a short focal	
	c) both objective and eye-piece have long focal lengths	d) both objective and eye-piece have short focal lengths	
18.	A ray of light travels a distance of 12.0 m in a transpa	rent sheet in 60 ns. The refractive index of the sheet is	[1]

2/10

	a) 1.33	b) 1.75	
	c) 1.50	d) 1.65	
19.	Which of the following principle is used in optical fib	pre?	[1]
	a) Total internal reflection	b) Scattering	
	c) Interference	d) Diffraction	
20.	The focal length of a concave mirror is f. An object is	placed at a distance x from the focus. The magnification is	[1]
	a) $\frac{f}{(f+x)}$	b) $\frac{(f+x)}{f}$	
	c) $\frac{f}{x}$	d) $\frac{x}{f}$	
21.	For a glass prism, the angle of minimum deviation wi	ll be smallest for the light of	[1]
	a) blue colour	b) yellow colour	
	c) green colour	d) red colour.	
22.	The frequency of light in a material is 2×10^{14} Hz and	d wavelength is 5,000 $\overset{\mathrm{o}}{A}$. The refractive index of the	[1]
	material will be		
	a) $1\cdot 40$	b) 3 · 00	
	c) 1 · 50	d) 1 · 33	
23.	The largest telescope in the world has a reflector with	an aperture of 200 inches in order to achieve	[1]
	a) low dispersive power	b) least spherical aberration	
	c) high resolving power	d) high accommodation power	
24.	The magnifying power of the telescope can be increased	sed by	[1]
	a) fitting eye-piece of high power	b) fitting eye-piece of low power	
	c) increasing the focal length of eyepiece	d) increasing the distance of an object	
25.	For a concave mirror of focal length f , the minimum of	distance between the object and its real image is:	[1]
	a) f	b) 2f	
	c) zero	d) 4f	
26.	Reflecting telescope utilizes		[1]
	a) Convex mirror	b) Concave mirror	
	c) Prism	d) Both Convex mirror and Concave mirror	
27.	A microscope is focused on a mark. Then a glass slab	of refractive index 1.5 and thickness 6 cm is placed on the	[1]
	mark. To get the mark again in focus the microscope	should be moved	
	a) 9 cm upward	b) 2 cm downward	
	c) 4 cm upward	d) 2 cm upward	
28.	A converging lens is used to form an image on a scree	en. When the upper half of the lens is covered by an opaque	[1]
	screen, then		
	a) no image will be formed	b) complete image will be formed	
	c) intensity of the image will increase	d) half the image will disappear	

29.	The minimum dist	tance between an object and its rea	al image formed by	a convex lens of focal length f is:	[1]
	a) 4f		b) f		
	c) 2f		d) 3f		
30.	A biconvex lens o be	f focal length f is cut into two iden	ntical plano conve	c lenses. The focal length of each part will	[1]
	a) 2f		b) $\frac{f}{2}$		
	c) 4f		d) f		
31.	The phenomena in	volved in the reflection of radiow	vaves by ionospher	e is similar to	[1]
	a) total internal during a mir	l reflection of light in the air rage	b) dispersion o during the fo	f light by water molecules prmation of a rainbow	
	c) scattering of	f light by the particles of air	d) reflection of	light by a plane mirror	
32.	A beam of monocl wavelength of refr	hromatic light is refracted from va racted light will be	acuum into a mediu	um of refractive index $1\cdot 5$. The	[1]
	a) smaller		b) same		
	c) dependent o	n intensity of refracted light	d) larger		
33.	There are certain r	material developed in laboratories	which have a nega	tive refractive index Figure. A ray	[1]
	incident from air (medium 1) into such a medium (medium 2) shall follow a path given by				
	a) ×		b) ×		
	c)		d) *(
34.	The diameter of a	plano-convex lens is 6 cm and the	e thickness at the c	entre is 3 mm. If the speed of light in the	[1]
	material of the len	is is $2 imes 10^8 { m ms}^{-1}$, the focal lengt	h of the lens is		
	a) 15 cm		b) 30 cm		
	c) 20 cm		d) 10 cm		
35.	To get three image	es of a single object, one should ha	ave two plain mirro	ors at an angle of	[1]
	a) 90°		b) 120°		
	c) 30°	\mathbf{Y}	d) 60°		
36.	A student measure measuring the dist	es the focal length of a convex len tance v of the image pin. The grap	s by putting an obj h between u and v	ect pin at a distance u from the lens and plotted by the student should look like	[1]
	a)	↓ v(cm)	b) ↑ v(cm)		
		u(cm)>		u(cm)	

c)

d)

37. In the figure given below there are two convex lenses L_1 and L_2 having focal lengths F_1 and F_2 respectively. The [1] distance between L_1 and L_2 will be:

c) F₁ - F₂

40.

- 38. The magnifying power of telescope is high if
 - a) the objective has a long focal length and the eye-piece has a short focal length
 - c) the objective has a short focal length and the eye-piece has a long focal length
 - focal length The relationship between angle of incidence i, prism of angle A and angle of minimum deviation for a triangular [1]

b) $F_1 + F_2$

- 39. prism is
 - b) A + $\frac{\delta_m}{\delta_m} = \frac{1}{2}$ a) A + δ_m = 2i c) A + δ_m = i The objective of a telescope has a focal length of is the height of the image of the tower formed by
 - a) 4 mm b) 2 mm c) 6 mm d) 8 mm
- 41. The radius of curvature of the curved surface of a plano-convex lens is 20 cm. If the refractive index of the [1] material of the lens be 1.5, it will
 - a) act as a concave lens irrespective of side on b) act as a convex lens only for the objects that which the object lies lie on its curved side c) act as a concave lens for the objects that lie d) act as a convex lens irrespective of the side on its curved side on which the object lies

The ratio of angle of minimum deviation for a thin prism with respect to air and when dipped in water will be: 42. [1] $\left(a\mu_g=rac{3}{2};a\mu_w=rac{4}{3}
ight)$

a) $\frac{1}{4}$ b) $\frac{1}{2}$ c) $\frac{1}{3}$ d) $\frac{1}{8}$

[1] Green light of wavelength 5,460 \overline{A} is incident on an air-glass interface. If the refractive index of glass is $1 \cdot 5$, 43.

b) both objective and eye-piece have short

focal lengths

d) both objective and eye-piece have long

10.0 m tall tower 2 km away. What

d)
$$2A + \delta_m = i$$

of 1.2 m. It is used to view a by the objective?

d) F₂

[1]

[1]

	the wavelength of light in glass would be (Given that the velocity of light in air, $c = 3 \times 10^8 \text{ m s}^{-1}$)		
	a) 6731 $\stackrel{\circ}{A}$	b) 3,640 $\overset{\circ}{A}$	
	c) 5,460 $\stackrel{\circ}{A}$	d) 4,861 Å	
44.	Which of the following is not due to total internal ref	lection?	[1]
	a) Difference between apparent and real depth of a pond	b) Mirage on hot summer days	
	c) Brilliance of diamond	d) Working of optical fibre	
45.	An observer looks at a tree of height 15 metre with a	telescope of magnifying power 10. To him, the tree appears	[1]
	a) 10 times taller	b) 15 times nearer	
	c) 10 times nearer	d) 15 times taller	
46.	Radius of curvature of human eye is 0.78 cm. For an	object at infinity, image is formed at 3 cm behind the	[1]
	refracting surface. The refractive index of eye is		
	a) 6.2	b) 3	
	c) 1.35	d) 1	
47.	An astronomical telescope of ten fold angular magnif	ication has a length of 44 cm. The focal length of the	[1]
	objective is		
	a) 44 cm	b) 440 cm	
	c) 4 cm	d) 40 cm	
48.	When a wave undergoes reflection at an interface from	m rarer to denser medium, change in its phase is:	[1]
	a) π	b) $\frac{\pi}{4}$	
	c) 0	d) $\frac{\pi}{2}$	
49.	When an object is placed between f and 2f of a conca	ve mirror, the image formed is	[1]
	a) Real, diminished	b) Virtual, magnified	
	c) Real, magnified	d) Virtual, diminished	
50.	A split lens has its two parts separated by a and its for	cal length is f. An object O is placed at a distance $\frac{f}{2}$ on the	[1]
	axis of the undivided lens. The distance between the	virtual source is:	
	F O ↓ i≪ f/2 ↓ a		
	a) a	b) $\frac{a}{f}$	
	c) $\frac{1}{2}$ af	d) $\frac{2a}{f}$	

51. The layered lens is made of two kinds of glass. A point source of light is placed on its principal axis. If the [1] reflections from the boundaries between layers are ignored, the lens will form

a) no image at all	b) two images
c) infinite images	d) only one image

52.	Refractive index of water is $\frac{b}{3}$. A light source is placed in water at a depth of 4 m. Then what must be the minimum radius of disc placed at water surface so that the light of source can be stopped				
	a) 3 m	b) 4 m			
	c) 5 m	d) infinite			
53.	A bird flies down vertically towards a water surface. will appear to	To a fish inside the water, vertically below the bird, the bird	[1]		
	a) move faster than its actual speed	b) be at its actual distance			
	c) move slower than its actual speed	d) be closer than its actual distance			
54.	In two positions concave mirror produces magnified	image of given object The positions are	[1]		
	a) (i) Beyond C, (ii) Between P and F	b) (i) At C, (ii) at F			
	c) (i) At C, (ii) between P and F	d) (i) Between F and C, (ii) Between P and F			
55.	A diver in a swimming pool wants to signal his distru- waterproof flash light.	ess to a person lying on the edge of the pool by flashing his	[1]		
	a) He must direct the beam vertically upward	 b) He has to direct the beam at an angle to the vertical which is slightly less than the critical angle of incidence for total internal reflection 			
	c) He has to direct the beam at an angle to the vertical which is slightly more than the critical angle of incidence for total internal reflection.	d) He has to direct the beam horizontally			
56.	A concave lens of glass, refractive index 1.5, has bot	h surfaces of the same radius of curvature R. On immersion	[1]		
	in a medium of refractive index 1.75, it will behave as a				
	a) divergent lens of focal length 3.5 R	b) divergent lens of focal length 3.0 R			
	c) convergent lens of focal length 3.0 R	d) convergent lens of focal length 3.5 R			
57.	An object approaches a convergent lens from the left of the lens with a uniform speed 5 m/s and stops at the				
	focus. The image				
	a) moves away from the lens with a uniform acceleration	b) moves away from the lens with a uniform speed 5 m/s			
	c) moves towards the lens with a non-uniform acceleration	d) moves away from the lens with a non- uniform acceleration			
58.	In a compound microscope, the intermediate image i	s:	[1]		
	a) Virtual, inverted and magnified	b) Real, erect and magnified			
	c) Virtual, erect and magnified	d) Real, inverted and magnified			
59.	The principal behind optical fibre is:		[1]		
	a) Total internal reflection	b) Both Total external reflection and Total internal reflection			

c) Diffraction

d) Total external reflection

	a) coma	b) spherical aberration	
	c) astigmatism	d) chromatic aberration	
61.	A plano-convex lens is made of glass of refractive inc	lex 1.5. The focal length f of the lens and radius of	[1]
	curvature R of its curved face are related as		
	a) $f=rac{R}{2}$	b) <i>f</i> = R	
	c) $f = 2R$	d) $f = \frac{3}{2R}$	
62.	A telescope, when in normal adjustment, has a magni	fying power of 6 and the objective and the eye-piece are 14	[1]
	cm apart The focal lengths of the eye-piece and the o	ojective respectively are	
	a) 2 cm and 14 cm	b) 3 cm and 12 cm	
	c) 2 cm and 12 cm	d) 3 cm and 14 cm	
63.	The focal length of the objective of a compound micr	oscope is	[1]
	a) greater than the focal length of eyepiece	b) equal to the length of its tube	
	c) equal to the focal length of eyepiece	d) lesser than the focal length of eyepiece	
64.	How will the image formed by a convex lens be affect	ted if the central portion of the lens is wrapped in a black	[1]
	paper?		
	a) No image is formed by the remaining	b) Full image will be formed but will be less	
	portion of the lens	bright	
	c) Two images will be formed	d) Central portion of the image will be absent	
65.	Figure shows PO as the ray of light incident normally	on the mirror AB. The mirror is then turned through 30° to	[1]
	the position CD. What will be the angle between the i	ncident ray and the reflected ray?	
	C MUMMUM		
	A		
	P		
	a) 120°	b) 30°	
	c) 15°	d) 60°	
66.	An experiment is performed to find the refractive inde	ex of glass using a travelling microscope. In this	[1]
	experiment, distances are measured by		
	a) a metre scale provided on the microscope	b) a screw gauge provided on the microscope	
	c) a vernier scale provided on the microscope	d) a standard laboratory scale	
67.	A lens of power +2.0 D is placed in contact with anot	her lens of power -1.0 D. The combination will behave like	[1]
	a) a converging lens of focal length 100 cm	b) a diverging lens of focal length 50 cm	

[1]

68. In the diagram, a prism of angle 30° is used. A ray PQ is incident as shown. An emergent ray RS emerges [1] perpendicular to the second face. The angle of deviation is:

	a) myopia	b) colour blindness	
	c) hypermetropia	d) astigmatism	
74.	Binoculars is preferred to a terrestrial telescope to ob-	serve a cricket match, because	[1]
	a) telescope has chromatic aberration	b) binoculars gives three dimensional view	
	c) telescope does not give erect image	d) binocular has shorter focal length	
75.	A thin convergent glass lens ($\mu_{ m g}$ = 1.5) has a power of	of +5.0 D. When this lens is immersed in a liquid of	[1]
	refractive index μ_1 it acts as a divergent lens of focal length 100 cm. The value of μ_1 must be		
	a) $\frac{4}{3}$	b) $\frac{5}{3}$	

c) $\frac{5}{4}$ d) $\frac{6}{5}$